
Mandatory Access Control

H̊akan Lindqvist

May 18, 2006
Master’s Thesis in Computing Science, 20 credits

Supervisor at CS-UmU: Jonny Pettersson
Examiner: Per Lindström

Ume̊a University
Department of Computing Science

SE-901 87 UMEÅ
SWEDEN

Abstract

This thesis discusses the Mandatory Access Control security model, using both a theo-
retical and a practical approach. Necessary basic security theory and theory concerning
security policies are discussed. A formal policy algebra, based on set theory and logic, is
discussed and used to specify a policy which is implemented using the SELinux security
framework. The SELinux security framework is briefly discussed and its control model
explained.

ii

Contents

1 Introduction 1

2 Problem Description 3
2.1 Problem Statement and Goal . 3

3 Logic and set theory 5
3.1 Propositional logic . 5

3.1.1 Atomic propositions . 5
3.1.2 Operators . 5
3.1.3 Formulas . 7
3.1.4 Quantifiers . 7

3.2 Set theory . 8
3.2.1 Forming sets . 8
3.2.2 Special properties and operators 8
3.2.3 Powerset . 9
3.2.4 Lattices . 9

4 Definitions and foundations of computer security 11
4.1 Fundamental components . 11
4.2 Fundamental properties of a secure system 13

4.2.1 Availability . 13
4.2.2 Confidentiality . 13
4.2.3 Integrity . 14

4.3 Trust and assurance . 15
4.3.1 Trust . 15
4.3.2 Assurance . 15
4.3.3 Certification . 17
4.3.4 Trusted Computing Base . 17

4.4 Defining secure systems . 18
4.4.1 Protection states . 18
4.4.2 Definition of a secure system . 19

iii

iv CONTENTS

4.4.3 State transition control and the Access control matrix 19
4.4.4 Protection states transitions . 20

4.5 When is a system secure? . 22
4.5.1 Is a system generally provably secure? 22
4.5.2 A model for traceable transfer or rights 22
4.5.3 Conclusions concerning secure systems 23

5 Access Control 25
5.1 Definitions of access control specification levels 25
5.2 Implications of different types of access control 25
5.3 Real world examples . 26

5.3.1 UNIX System V/MLS Access Control 26
5.3.2 SunOS . 26

6 Security Policies 27
6.1 Definitions used in security policy theory 27
6.2 Security as a process . 28
6.3 Formulation of a security policy on an organizational level 28

6.3.1 Organizational issues when defining a security policy 29
6.4 Examples of security policy models . 29

6.4.1 The Bell–Lapadula Model . 29
6.4.2 Domain Type Enforcement . 30
6.4.3 Role Based Access Control . 31

7 A common security policy algebra 33
7.1 Motivations . 33
7.2 Algebra basics . 34
7.3 Syntax . 34

7.3.1 Syntax definition . 34
7.3.2 Operators . 35
7.3.3 Conflict resolution . 39

7.4 Semantics . 41
7.4.1 Convenient definitions . 41
7.4.2 Atomic policies . 42
7.4.3 Non–atomic policies . 42
7.4.4 Clarification of the semantics definition 44
7.4.5 Discussion of the definition’s inconsistencies 44

7.5 Examples . 45
7.5.1 A trivial example . 45
7.5.2 Combining access control specification for a user 45
7.5.3 Conflict resolution with restriction and closing 46

7.6 Multilevel security . 46

CONTENTS v

7.6.1 Observations on the algebra’s operations 47

7.6.2 Simple multilevel security extension 47

7.6.3 Example usage of the multilevel security extension 48

7.7 Discussion . 49

8 Security Enhanced Linux 51

8.1 Pre–Linux history . 51

8.2 SELinux history . 52

8.3 Architectural overview, Flask and SELinux 52

8.3.1 Major components . 52

8.3.2 Access decisions . 53

8.3.3 Files and persistent state . 53

8.4 SELinux LSM implementation . 54

8.4.1 The security module’s internal architecture 54

8.4.2 Module initialization . 55

8.4.3 Module issues . 55

8.5 Policy support and its representation in SELinux 56

8.5.1 Overview of the SELinux security model 56

8.5.2 Policy languages . 58

8.5.3 Available SELinux policy configurations 58

8.5.4 Multilevel security . 59

8.5.5 A short overview of SELinux configuration 59

8.6 Concluding remarks and other technologies 60

9 Reference implementation of a simple policy 61

9.1 Problem environment . 61

9.2 Informal policy description . 61

9.3 Formal policy description . 62

9.3.1 Formulation of the MLS restrictions 63

9.3.2 Assignment of MLS authorizations 63

9.3.3 Transforming the MLS extended policy into atomic form 64

9.3.4 Closing the derived policy . 64

9.4 Implementing the policy under SELinux 65

9.4.1 Installation of SELinux support 65

9.4.2 Setting up the MLS environment 66

9.4.3 Testing the reference implementation 69

9.4.4 Problems with the policy implementation 73

9.4.5 Conclusions concerning the policy implementation 73

vi CONTENTS

10 Comparing SELinux’ policy language to the policy algebra 75
10.1 Access restriction . 75
10.2 Access right association . 75
10.3 Ability to catch errors in the resulting policy 76
10.4 Readability . 76
10.5 Conclusion . 76

11 Conclusions 77

12 Acknowledgements 79

References 81

A Source Code 85
A.1 Compilation configuration . 85
A.2 Home directory security context configuration 86
A.3 File system security context configuration 88
A.4 User configuration . 92

List of Figures

3.1 Operators in basic propositional logic, shown in order of precedence [Mor01] 6
3.2 Interpretation of logical operators [Mor01] 6
3.3 A lattice of a few sets under the relation ⊆ 10

4.1 A pictorial explanation of secure and insecure states 18
4.2 An access control matrix describing the access rights for two processes to

two files and each other. Adapted from Bishop [Bis03] 19

8.1 Illustration of the SELinux control over a subjects rights assignment . . 57

9.1 Informal description of the strict Bell–Lapadula security policy 62

vii

viii LIST OF FIGURES

Chapter 1

Introduction

Most, if not all, computer systems in use in the world today are insecure in some
respect. Research has shown that the security technology currently deployed in the
computer industry today is unable to provide a sufficient level of protection for most
systems [Petb]. Acoording to [Petb] all systems use a security model that is inherently
nearly impossible to secure: discretionary access control, or DAC. In that security model,
the owner of an object in the system, such as a file, has full control of whom may access
it. This open a wast amount of ways in which the system can be rendered insecure due to
abuse, accidents or misconfiguration. It is argued in [Petb] that instead the mandatory
access control, or MAC, security model should be used. In that model the right to
access objects is left exclusively to the operating system and can not be circumvented
by the users of the system. MAC implemented on an operating system level defines an
access policy in a system that, if defined correctly, is impossible to circumvent, hence
the argument is that it provides a greater level of protection.

With this as a motivation, this thesis will introduce basic definitions of security
theory, such when a system may be considered secure, in Section 4. Then it is shown
how it is possible to establish when a system in secure in Chapter 6 to 7. Finally an
example on how established criteria can be implemented, following the criteria presented
in Chapter 4.2.3, is presented in Chapter 9 using an existing technology. Hence, the
larger part of the thesis will have a theoretical focus.

1

2 Chapter 1. Introduction

Chapter 2

Problem Description

2.1 Problem Statement and Goal

The main purpose of this thesis is to examine the Mandatory Access Control security
model, from both a theoretical and a practical perspective. To make this possible, the
basic theory needed to understand the model will be investigated and briefly discussed.

The theoretical approach should, if possible, discuss an algebra that can be used to
express the security relations for any system. Such an algebra should be able to describe
access restrictions as well provide an abstraction from real systems.

The theoretical survey should then be used to explore the relatively new SELinux
MAC framework from the National Security Agency (NSA), an intelligence agency lo-
cated in the USA. The framework should be used to implement a well defined security
setup, defined with the help of the previously mentioned security algebra. The security
configuration displayed using the framework need not be large, merely describe some
important features, which based on current work are deemed important to display.

The theoretical and the practical approach should then be compared with respect to
expressiveness to see if any of them is apparently more expressive than the other.

After reading the thesis, the reader should have a basic understanding of real world
application of security.

3

4 Chapter 2. Problem Description

Chapter 3

Logic and set theory

In the formal aspects of computer security theory, the most common tool is mathematics.
More specifically, set theory is used to a large extent to express properties between
entities in systems and their relations. This chapter will provide a very basic introduction
to the topics set theory and the closely related field of propositional logic. All material
presented is adapted from the book “Discrete and Combinatorial Mathematics” [Ral00]
and “Mathematical Logic for Computer Science” [Mor01].

3.1 Propositional logic

Propositional logic, or more correctly propositional calculus, work with expressions with
two possible values: true or false. That is, each expression has only two possible values.
How such expressions, and the fundamental parts that form them, will be presented
below.

3.1.1 Atomic propositions

To assign any meaning to a logical expression, all parts of it must have a defined meaning.
The assignment is done through the basic building blocks called atomic proposition.
These are the sentences that can not be divided into any smaller compositions, and
therefore have a fixed value of true or false. How compositions of atomic propositions
are made is defined in Section 3.1.3. It describes how to apply rules to build “formulas”
using operators presented in the following section

3.1.2 Operators

Any expression in propositional logic can be subjected to an operator since the expres-
sion only represents a value. The operators either directly affect the value that the
expression evaluates to, or take the value and combine it with another value to form a
new expression, which in turn gives a new value.

The operators that were described were unary and binary, respectively. Figure 3.1.2
presents relevant operators, in order of precedence.

The interpretation of an operator is easily represented with a truthtable, in which
all possible of expression values that the operator uses and the outcome are presented.

5

6 Chapter 3. Logic and set theory

Symbol Type Name Example
¬ Unary Negate ¬ expr
∨ Binary Disjunction expr1 ∨ expr2
∧ Binary Conjunction expr1 ∧ expr2
→ Binary Implication expr1 → expr2
⊕ Binary Exclusive or expr1 ⊕ expr2
↑ Binary Nor expr1 ↑ expr2
↓ Binary Nand expr1 ↓ expr2
↔ Binary Equivalence expr1 ↔ expr2

Figure 3.1: Operators in basic propositional logic, shown in order of precedence [Mor01]

Operator Expression Resulting value
¬ True False

False True

Operator Expression one Expression two Resulting value
∧ True True True

True False False
False True False
False False False

Operator Expression one Expression two Resulting value
∨ True True True

True False True
False True True
False False False

Operator Expression one Expression two Resulting value
→ True True True

True False False
False True True
False False True

Operator Expression one Expression two Resulting value
⊕ True True False

True False True
False True True
False False False

Operator Expression one Expression two Resulting value
↑ True True False

True False True
False True True
False False True

Operator Expression one Expression two Resulting value
↓ True True False

True False False
False True False
False False True

Operator Expression one Expression two Resulting value
↔ True True True

True False False
False True False
False False True

Figure 3.2: Interpretation of logical operators [Mor01]

3.1. Propositional logic 7

The ↔ operator also hints of what is defined as logical equivalence; two expressions
with the same value are considered to be logically equivalent. That is, one can exchange
one for the other in some larger, nested, expression and the value of that expression
does not change. The notion of nested, large, expression is the topic of the next section.

3.1.3 Formulas

In the previous section, the term “expression” was used extensively to provide context
for the operators described. In propositional logic however, the more common term is
“formula.”

A formula is defined as a syntactically correctly formatted set of operators and
identifiers with respect to the following rules, where ::= is syntactic assignment (i.e.
what a word can be replaced with, how to interpret the resulting formula is defined
using Figure 3.1.2):

1. fml ::= p, for any symbol p that represents some value

2. fml ::= ¬fml

3. fml ::= fml ∨ fml

4. fml ::= fml ∧ fml

5. fml ::= fml → fml

6. fml ::= fml ↔ fml

7. fml ::= fml ⊕ fml

8. fml ::= fml ↑ fml

9. fml ::= fml ↓ fml

The reader should note that several of the rules are mutually recursive.

3.1.4 Quantifiers

Quantifiers are simple operators that express a count of symbols that holds some prop-
erty. The two commonly used quantifiers are “for all”, ∀, and “exists” (at least one), ∃.
How these are used is best illustrated with an example:

∀x(q → p)

The above formula is read as: “for all x for which the expression q implies p is true.“

∃x(q → p)

The above formula is read as: “there exists at least one x for which the expression
q implies p is true.“

8 Chapter 3. Logic and set theory

3.2 Set theory

Set theory is a mathematical way of grouping abstract objects, which may be logical
representations of real objects, and describing relations between them.

This section will start out with the definition of what a set is, and then continue with
some smaller elaboration on how objects inside a set may be ordered, forming structures
such as a lattice.

3.2.1 Forming sets

A set is simply a grouping of several objects, using some criteria for the grouping. An
intuitive set to use as an example is the set of natural numbers, which can be expressed
with the use of logic:

N = {x | ∀x such that x is a non-negative integer} = {0, 1, 2, . . .}

3.2.2 Special properties and operators

Since a set is an abstract way of grouping objects, some special characteristics have been
associated with them to ensure proper interpretation. The more fundamental properties
and operators are described below.

Union

A set is a collection of unique objects, that is, if you form a new set by combining two
existing sets which both have some object x, only one x will be present in the new set.
Such an action is called a union of two sets and is expressed here with an example:

{1, 2, 3} ∪ {1, a, a, b} = {1, 2, 3, a, b}

Set equality

Normally a set is unordered, which means that two sets that have their members ordered
in a different way, but consists of the same members are equal. An example:

{1, 2, 3} = {1, 3, 2}

Subset

Sets are often partially equal. That is, they are partly made up of parts that are present
in other sets. Two situations arise: they can either contain objects that all are present
in some other set, or they can contain objects that are present in some other set and
then some objects which are not present int the other set. These situations are called
subset and proper subset respectively.

Two examples will make the distinction clear:

{1, 2, 3} ⊆ {1, 2, 3, 4, 5}

The above depicts a proper subset relation.

3.2. Set theory 9

{1, 2, 3, a, b, c} ⊂ {1, 2, 3, 4, 5}

The above depicts a subset relation.

Difference

Different sets may describe different groups of objects, which implicates that their set of
members differ. To express the set of objects that forms the set of difference between two
sets, the difference operator is used. The following examples should make the semantics
clear:

{1, 2, 3, a, b, c} \ {q} = {1, 2, 3, a, b, c}

{1, 2, 3, a, b, c} \ {1, 2, 3, a, b} = {c}

{1, 2, 3, a, b, c} \ {1, 2, 3, a, b, c} = {} = ∅

Where ∅ is the empty set.

3.2.3 Powerset

A powerset describes all the possible ways to combinate the members of a set. As such,
the powerset function maps a set to a collection of all subsets that belong to the original
set. An example will clearify how the mapping works:

℘({a, b, c}) = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}}

Note how the set equality makes the number of sets lesser than if the order of the
elements in a set would matter.

3.2.4 Lattices

Lattices are a very important type of ordered sets, where an ordered set is a set in which
the set’s members are internally ordered under some relation. Lattices commonly occurs
in traditional security theory, and will be shortly revisited in the chapter on security
policies.

A lattice is a structure which has both a single upper and lower bound, and all other
objects can be ordered using some relation between these two. For example, assume
that the upper bound is the set: {1, 2, 3, a, b, c}, and the lower bound is the set: {a}.
Figure 3.3 shows a resulting lattice under the relation ⊆.

10 Chapter 3. Logic and set theory

Figure 3.3: A lattice of a few sets under the relation ⊆

Chapter 4

Definitions and foundations of
computer security

Mathematical formalism is necessary for the discussion, and therefore there is a need
for precise definitions of the entities that are discussed. The more general definitions
used will be presented here, with a few examples to make the meaning of each of the
definitions clear on an informal level. Unless explicitly stated, all definitions are adopted
from [And01a, Bis03].

The discussion in the section on access control matrix constitutes the foundation for
the theory of access control, a topic that will be discussed more in later chapters.

4.1 Fundamental components

The widest term used is that of a system. It encapsulates the collection of all parts that
make up a functional unit of some kind, for example a networked set of computer, their
users, administrators, usage regulations and so forth. The definition of a system is:

Definition 4.1.1. A system is an ordered set made up of, in this order:

1. Products or components

2. Operating system, communications and all things that make up an organisation’s
infrastructure

3. Applications

4. IT staff

5. Internal users and management

6. Customers external users

7. The surrounding environment

Notice how the definition starts at the core of any organisation’s machine setup and
works outwards, encapsulating components that are depending on the inner layers. This
multilayer view of things is a common way of looking on security, and the importance
of each layer will become clear in later chapters. One could say that the level of trust

11

12 Chapter 4. Definitions and foundations of computer security

decreases monotonically with each layer. The issue of trust is further elaborated upon
in Section 4.2.3.

There are certain entities that issue actions upon other entities. Such an issuer of
action is called a subject. The definition used is:

Definition 4.1.2. A subject is a physical or legal entity in any role. A subject s is
part of a set S.

Note that this definition encapsulates many types of entities; any organization and
persons that are interacting with the system both legally or in an illicit manner. That
is, a subject is any member of a system from layer 4 and out.

The parts of a system that subjects interact with may either be other subjects, or
a passive component, called an object.

Definition 4.1.3. A object is a passive entity in a system, typically acted upon by a
subject.

The above definitions encapsulates many of the components on a low level in a
computer system, such as hardware, files and data structures. A wider definition that
encapsulates more entities, from several levels in Definition 4.1.1, is the notion of a
principal [And01a]:

Definition 4.1.4. A principal is an entity that participates in a security system.

This means that a principal includes, but is not limited to, subjects, objects,
processes, a role and any equipment in the system. The difference between a principal
and an arbitrary entity is that a principal, by definition, interacts with a security
system.

4.2. Fundamental properties of a secure system 13

4.2 Fundamental properties of a secure system

The basis of computer security issues are made up of three fundamental properties.
They describe the accessibility of the system, the correctness of any manipulation of
any object on the system and to what extent information considered sensitive is kept
secret. The properties are called availability, integrity and confidentiality and
they will be described in turn below. The definitions are taken from [And01a, Bis03].
Each section will begin with a discussion, and proceed with the definition of the term.

4.2.1 Availability

One of the most basic aspects of a system is its availability. If a subject is unable
to utilize the services provided, the service may just as well not exist.

Consider the use of remote surgery using a telesurgical system [Bro]; a surgeon is
located at a remote site, possibly in another country, than that of the patient. It is
of utmost importance that the responsiveness and accuracy of this system is fast and
correct. If the service on either end would cease to respond, catastrophe may very well
be the result. In this extreme example of availability, all parts of the resulting system
used to perform the operation is of utmost importance to guarantee the wellbeing of
the patient. Any interruption in the availability of the system’s parts will make the
availability of the entire system to fail.

Definition 4.2.1. Let X be a set of entities and I be a resource. Then I has the
property of availability with respect to X if all members of X can access I.

Note the use of the word “entities” in the definition. This word gives the definition
a bigger encapsulation than if the term subject would have been used. This means
that any part of the system may judge upon whether some resource I is available or
not; it need not be considered a subject to do so. Another, basic but important, thing
to notice about this definition is that the availability is defined with respect to some
well defined set X, but no restriction to its definition is given.

4.2.2 Confidentiality

To keep data and its existence secret is a problem that many organisations put a sig-
nificant amount of time and money into. To keep data confidential is a major concern
to, for example, intelligence agencies and the military, where information is often made
available to personnel on a “need to know” basis. Cryptography is an important part
in the implementation of confidential systems.

A sensitive example of the use for confidentiality, are the medical records that
are stored in medical databases. In these databases, information about ones emotional
health, inherited genetical diseases, HIV status and more is stored. Most people consider
this information to be very private and don’t want anybody but perhaps their doctor to
know about it. This has good cause as many people have been harassed and fired upon
that their medical information has been made public [Sch00].

Definition 4.2.2. Let X be a set of entities and let I be some information. Then I
has the property of confidentiality with respect to X if no member of X can obtain
information about X.

Again, notice the use of the word “entities” and the use of the well defined set X.

14 Chapter 4. Definitions and foundations of computer security

4.2.3 Integrity

In most commercial environments, the integrity of information is more important than
to protect it from illicit access, although that too is an important issue. Consider for
example the importance of integrity in a bank’s transaction records or the contents of a
gas station’s selling record.

There are two main categories of integrity–based mechanisms:

– detective integrity mechanisms

– preventive integrity mechanisms

Detection mechanisms are used to detect any unauthorized modification to infor-
mation. The mechanism may give a detailed report under which circumstances the
information’s integrity was affected: by whom and what part of the information that
was affected, or it may just report that the data has been changed and mark the data
as no longer trustworthy.

Prevention mechanisms try to maintain the integrity of any information by blocking
any unauthorized attempts to modify it. This also includes the case when a user that
has been authorized to modify some information in a certain way tries to alter it in an
unauthorized manner.

Integrity may be one of the most important issues in today’s online world; Schneier
[Sch00] means that “integrity is about a datum’s relation to itself over time,” and gives
several examples of why it gets more and more important. He says that today it is very
easy to forge an article so that it look genuine, like it came from some well respected
magazine. This makes it much more difficult to distinguish false information from valid
when obtained from an online source.

Schneier provides a specific example of this, concerning trading with stock: An
employee of ParGain Technologies managed to post fake takeover announcements, which
were designed to look like they came from the Bloomsberg news service. This had the
effect of running the stock up by 30 percent before the truth was unveiled.

Definition 4.2.3. Let X be a set of entities and let I be some information. Then I
has the property of integrity with respect to X if all members of X trust I.

Yet again, the word “entities” is used with respect to the well defined set X. As was
previously noted, the term trust is defined in Section 4.3.1.

4.3. Trust and assurance 15

4.3 Trust and assurance

In order to implement security in a computer system, it is obvious that there must be
one or more system components that can be trusted to be correct. One such technique
will be discussed in this chapter: Trusted Computer Base. After the introduction to
the notion of trust, the concept of assurance will be lightly touched upon.

4.3.1 Trust

Trust is probably one of the most important factors in real life: on a daily basis we
trust in that people will do what they are expected to do in different situations, such
as not breaking the law and that everyone will try not to contradict social norms.

For security, it becomes the question [Bis03, Amo94]: ‘‘To what degree can I
trust this system being secure?’’

Bishop [Bis03] provides a definition of trust which fully encapsulates the above ques-
tion:

Definition 4.3.1. An entity is trustworthy if there is sufficient credible evidence lead-
ing one to believe that the system will meet a set of given requirements. Trust is a
measure of trustworthiness, relying on the evidence provided.

The definition also captures two key points: that trust is a subjective measure that
is dependant on how much evidence of a system’s security is provided, and what kind
of evidence it is.

So, for a system that has been designed and implemented to be secure, potential
users of the system will have to be provided evidence for that any trust they might have
for the system’s correctness is not misplaced.

This problem is especially true for all companies that sell software; only the trust
that a company gets from their customers that they have a functionally correct and
secure product will ensure continued investments in software from that company. This
brings up the issue of assuring correctness, which is the topic of the following section.

4.3.2 Assurance

As was mentioned in the previous section, there is a need to provide convincing argu-
ments that a product works as stated – that it functions as is claimed and that it is
secure. Stated differently, the problem is to provide convincing proof of the system’s
correctness.

Definition

The process of gathering evidence for the security, and correctness, of a system is called
assurance. The following definition provides a good starting point for the rest of the
discussion [Bis03]:

Definition 4.3.2. Security assurance, or simply assurance, is confidence that an
entity meets its security requirements, based on specific evidence provided by the appli-
cation of assurance techniques.

The definition does not specify what kind of assurance techniques that should be
employed, just that they should. The goal of the assurance techniques though are to
eliminate all mistakes that can be done during the development of a system.

16 Chapter 4. Definitions and foundations of computer security

Problems and countermeasures

As was mentioned above, the goal of applying assurance is to reduce the occurrence of
errors in the system. In that respect, assurance has very much in common with software
engineering (see e.g. [Sha, Mar03, And01a]) in that it tries to eliminate as many problem
factors as possible. The following list of errors and trouble sources is given in [Bis03] as
issues in computer systems:

1. Requirement definition, omissions and mistakes

2. System design flaws

3. Hardware flaws

4. Software flaws, programming and compiler bugs

5. System use and operation errors and inadvertent mistakes

6. Willful system misuse

7. Hardware, communication or other equipment malfunction

8. Environment problem, natural causes and random events

9. Evolution, maintenance, faulty upgrades and decommissions

All of these sources of security issues are well known, and there are different as-
surance techniques to counter most of them. Natural causes and random events are
hard to counter though. The counter measures that are discussed below are adapted
from [Bis03].

The first thing to assert correctness for is design. Correctness and completeness
testing is an absolute necessity to ensure that the correct security measures are being
taken and that they encapsulate the problem space. This kind of assurance deals with
problems of type 1, 2 and 6.

Second, the implementation of the designed system must be checked, both hardware
and software, which handles the problems listed under 3, 4 and 7. Moreover, this will
also handle problems with maintenance, environmental problems and willful misuse (list
items 6, 8 and 9) since the assurance should stretch to the deployment of the system.

To counter operational problems, operational assurance can handle the problems
under list item 5. Techniques for doing this are, for example, monitoring and audit.
These techniques will hopefully find flaws in the system as it is used and is in the
maintenance phase, so that those errors can be dealt with [CSR].

Real world example: OpenBSD

As a real world example of how several of the above techniques are being used, the free
POSIX–compatible system OpenBSD1 is presented.

OpenBSD has a very strong focus on security, and therefore has included a significant
amount of well designed countermeasures to well known vulnerabilities such as buffer
overflows and rights escalation.

One of the most impressive parts of the OpenBSD effort is the thorough code audit the
operating system, and its userland tools (i.e. tools used in application space as opposed

1Official website: http://www.openbsd.org

4.3. Trust and assurance 17

to kernel space, in which the operating system’s kernel operates), has undergone: the
code is constantly checked for bugs and possible errors, which has uncovered a lot of
bugs over the years [Ope].

The open nature of OpenBSD gives the discussion on design issues a natural solution
in the project’s mailing lists, flaws in the software are tested for by test releases and
actual use, maintenance is a constant factor due to the commitment of the community
and the developers.

4.3.3 Certification

Although assurance at different levels while constructing a system is an obvious way of
increasing the quality of the end product, different types of assurance techniques are
likely to uncover different types of errors and flaws unequally well. To make it possible
for someone not involved in the actual work on a system to judge on the process used
for verification some common ground between different projects is needed. Certification
is such an effort.

A certification is a formalized way of placing trust in a system by using a well defined
set of assurance techniques. Different certifications will provide different levels of trust
for a system based on how the validation is performed.

For example, lower certification levels may require the use of software development
methodologies and testing of the correctness of the system’s functionality compared to
specification documents. On the other end of the scale are formal proof of the systems
functionality, in which the entire system is subjected to mathematical proof for the
correctness of each line of code.

An industry standard used extensively is the Common Criteria, which has seven
levels of trust. The levels ranges from “no trust” to “Formally Verified Design and
Tested” [Bis03, IAC]. Very few projects ever reach the higher levels of the criteria.

4.3.4 Trusted Computing Base

Previously in the chapter, the topics of assurance and certification have been discussed.
As is easily understood, thorough verification of a piece of software’s correctness is time
consuming. In commercial projects, cost also becomes an important factor.

For these reasons it is a good idea to minimize the code base that should be respon-
sible for enforcing the security of the system, that is the mechanism that implements
the system’s security policy.

A definition of the parts of a system that is responsible for implementing the mech-
anisms is provided [Bis03]:

Definition 4.3.3. A Trusted Computing Base (TCB) consists of all protection mech-
anisms within a computer system – including hardware, firmware and software – that
are responsible for enforcing a security policy.

One important conclusion can be reached from this: if the TCB is small enough to
be properly verified, using techniques such as assurance and certification conformance,
and all policy dependant decisions in the system pass through the TCB, then the level
of trust that can be placed in the system will be directly dependant on the results from
the verification of the TCB.

The challenge is often to make the size of the TCB manageable for any form of
verification. It will often include too many parts of an operating system’s kernel, and

18 Chapter 4. Definitions and foundations of computer security

therefore be of great size, to be practically feasible for any more formal type of correctness
tests. It is not unusual that the entire memory management subsystem is a part of the
TCB [Amo94].

4.4 Defining secure systems

One important part of understanding the term “secure” is to understand exactly what
that term means in this context. Consider for example the action of opening a file for
writing and then writing some data to it. Two questions may come from this seemingly
simple action: was the subject allowed to access and modify that subject, and can the
system be considered secure after those actions?

Unless explicitly stated, the discussion below is adapted from [Bis03].

4.4.1 Protection states

To be able to analyze a situation in which the question of whether or not a system is
secure, the system can be thought of as a state machine in which all components of the
system makes up the definition of each state, and changes in any of these components
constitutes a transition to another state. Obviously some of the machine’s states are
undesirable to reach.

To formalize the discussion the notion of a protection state is introduced. Let P
be the set of protection states and Q be a subset of P , where ∀q ∈ Q are the states
that the system is authorized to enter, if the system is to be considered secure.

With the introduction of protection states, the problem is now reduced to defin-
ing a method that will force the system to only make transitions between states that
are in the set Q.

Figure 4.1: A five state situation. The directed arrows depict possible transitions. It is
an insecure system since it may reach an insecure state

4.4. Defining secure systems 19

4.4.2 Definition of a secure system

The follow definition is very general in nature and is quite intuitively tied to the intro-
duction of protection states above.

Definition 4.4.1. A secure system is a system that starts in an authorized state and
cannot enter an unauthorized state.

This entirely encapsulates the example and the discussion in the preceding section;
the transitions that would render the state machine describing the system entering an
unauthorized state must be avoided if a system is to remain secure.

An example of states and transitions between them is depicted in Figure 4.1. In the
figure, states labeled “1”, “2” and “3” are defined to be secure, while the states labeled
“4” and “5” are defined to be insecure. The system described by these five states, and
the possible transitions between them, is not to be considered secure since it is possible
for the system to enter an insecure state.

4.4.3 State transition control and the Access control matrix

To solve the problem of which transitions can be allowed, some kind of decision sys-
tem that takes into account the current context and the requested transition must be
constructed. An appropriate model must be able to determine exactly what actions a
specific subject is allowed to perform on any object.

A model that addresses these issues is a very intuitive model called the Access
control matrix model, which exhaustively describes the rights that each entity have
over all other entities [Bis03].

The model partitions the entities of a system into two categories: the entities that
must be protected and those that don’t. The entities that are considered relevant to
the protection state of the system are placed into either a set of objects O or a set
of subjects S, that is processes and users. This makes it possible to associate all pair
(s, o), where s ∈ S and o ∈ O, with some set of rights r ⊆ R, where R is the set of all
rights available in the system.

The right r is then captured in an access matrix A such that a[s, o] = r, where
a[s, o] ∈ A and by consequence a[s, o] ⊆ R.

file 1 file 2 process 1 process 2
process 1 read read, write, own read, write,

execute, own
process 2 read, own read read read, write,

execute, own

Figure 4.2: An access control matrix describing the access rights for two processes to
two files and each other. Adapted from Bishop [Bis03]

The three sets can be used to describe set of protection states for the system
using the triple (S, O, A). That is, as long as the identified subjects, accesses objects
accordingly to the rights given by the access matrix A, the system will never enter an
unauthorized state.

For example, consider the access control matrix depicted in Figure 4.2. It describes
exactly which rights “process 1” and “process 2” has with respect to the files “file 1”

20 Chapter 4. Definitions and foundations of computer security

and “file 2” and to each other. For example, “process 1” has no rights over “process 2,”
while the later may read from “process 1.”

4.4.4 Protection states transitions

In the previous section, the access control matrix was introduced. If one assumes that
such a matrix is made available, how can the actions necessary to work with objects
in a realistic way be done in a secure manner? Those actions will necessary include:
creation, deletion, modification and rights modification or rights transfer for any object
governed by the access matrix.

Bishop [Bis03] describes this as a series of state transitions, in which the protection
system changes. More specifically, if a system starts in a state X0 = (S0, O0, A0),
and then transitions through a set of states X1, X2 . . . by the use of operations from
an operation set {τ1, τ2, . . .}, then those transitions necessarily change the contents
of the access matrix if the access rights of subjects are affected, or if objects are
created or deleted. Obviously there is a need to define the operations in the operation
set {τ1, τ2, . . .} in such way that the access control matrix won’t be modified to allow
system states that are considered insecure.

These operations may be defined as commands. The definition of the necessary
commands has been well defined by previous work by Harrison (among others) [Har76],
and those specifications will be used here. Some of the precise notations are adapted
from Bishop [Bis03].

The context is such that before the execution of a primitive command the system’s
state can be described by the triple (S, O, A) and afterwards by the corresponding triple
(S′, O′, A′). Special note should be given to the preconditions and postconditions of
the aforementioned commands. The precondition presents the condition relative to the
system’s state for the command to be able to execute, and the postcondition describes
the changes done to the access system’s state.

1. Primitive command: enter r into a[s,o]
Precondition: The subject and object being considered exist in the access matrix
Postcondition: If the right already exist in that entry, the command will not
affect the matrix, else the right r is added

2. Primitive command: delete r from a[s,o]
Precondition: The subject and object being considered exist in the access matrix
Postcondition: If the right does not exist in the access matrix, nothing happens,
else it is removed

3. Primitive command: create subject s
Precondition: The subject must not exist as a subject or an object before the
execution of the command
Postcondition: The subject is entered in the access matrix with previous entries
having no rights in accessing the new entry. No access entries are added for the
new subject either

4. Primitive command: destroy subject s
Precondition: The subject must exist in the access matrix
Postcondition: The subject is removed from the access matrix, and all entries
corresponding to the access rights of others relating to the removed object are also
removed

4.4. Defining secure systems 21

5. Primitive command: create object o
Precondition: No such object exists
Postcondition: Adds the object to the access matrix. Like the create subject
command it does not manipulate the access rights present in the matrix

6. Primitive command: destroy object o
Precondition: The object must exist in the access matrix
Postcondition: The object is removed from the access matrix and all rights in
the access matrix relating to the object are also removed

Using these command the access matrix will always be modified in such way that
the entries will be left in a consistent state.

However, to make use of these primitive commands to represent most real world
systems, more preconditions must be evaluated before any of them are to be executed.
For example, on most systems only the owner of a file may enter or remove rights of
a file. Also, many operations group several primitive commands to do their job. A
typical example of such an operation is creating a file, which might do the following:

1. Does the user have the right to create contents in the directory of interest?

2. Create the file, which is a object

3. Set the owner of the file to the creating user

4. Set default rights for everybody else on the newly created object

Such grouping must be done for all commands that is done by an operating sys-
tem [And01b], typically such commands are called system calls.

Considering this new tool, can we be sure that the system is secure? Is the transfer
of rights between subjects concerning access to other subjects and objects done in
such a manner that no rights are leaked and possibly exploitable by a malicious user?
This question is addressed in the next section.

22 Chapter 4. Definitions and foundations of computer security

4.5 When is a system secure?

In the previous sections the access matrix, and state transitions that modify it, was
introduced. Now the goal is to determine just how such a transition can be made while
ensuring that no rights are leaked in an inconsistent manner, enabling the system to
enter an insecure state.

This section starts with a light introduction to whether or not an arbitrary system
may be proved secure. The result of such a proof presents the need for restriction of the
transfer of rights in a system. Such a restricted model for how rights are appropriately
transferred within an access matrix, to ensure that the system does not enter an insecure
state, is then presented.

4.5.1 Is a system generally provably secure?

A system’s security is in the general case, unfortunately, proven to be undecidable.
Harrison and Ruzzo [Har76] proved this in 1976 by translating the actions of handling
rights in an access control matrix to the state transitions of a Turing machine, and
setting the fact that a right has been leaked in the access control matrix as the halting
state.

Since it has been shown that a Turing machine can not be proven to reach its
halting state, the problem is undecidable since it is non–traceable. (See e.g. [Sud97] for
information about Turing machines and the halting problem.)

4.5.2 A model for traceable transfer or rights

Even though it has been proved generally impossible to assert security in system, a more
controlled environment than the access control matrix most general form will make it
possible to guarantee that a system will remain in a secure state. Sandhu demonstrated
such a tool with the Schematic Protection Model (SPM) [Rav88], which is proven to be
traceable. The non–traceability of the access control matrix is the focus of the problem
of that model for general use.

SPM is made up of a few simple elements, which when instantiated properly, are
able to emulate other protection models. One such model is the Take grant model
(see [Bis03] for an easy explanation of that model). SPM has the following components:

1. A finite set of principal types partitioned into two sets, holding subject’s and
object’s type respectively

2. A finite set of rights, which is partitioned into two sets. One holding the inert
rights (the rights that do not alter the system’s state) and another holding the
control rights

3. A finite collection of links predicates. Used to determine if there is a connection
between two subjects, based on their types, that can be used to copy a right

4. A filter function for each link predicate, which will either allow the copying of a
right or deny it

5. The operation for creating new subjects and objects

6. A rule that is associated with all operations that create any type of entity, that
control which initial rights the created entity will be associated with

4.5. When is a system secure? 23

Note that SPM as presented only describe a monotonically growing system.
Using this model, all rights are transfered using a well specified system of rules

that are unconditionally applied to all operations by the links predicates and the filter
functions. Sandhu demonstrates several models in his paper by instantiating the sets in
the model’s component list appropriately, and gives a convincing argument that many
models can be emulated by SPM, and as such be traceable [Rav88]. The fact that SPM is
so powerful and proven traceable, makes it clear that models that are either equivalent
with or instanciable in SPM will be secure.

4.5.3 Conclusions concerning secure systems

The above discussion made it clear that an unbound system is provably insecure, which
can be proven by mapping the primitive operations for modifying an access matrix to a
Turing machine.

The introduction of restrictive rules however, made it possible to limit the problem
such that it became traceable and thus provably secure. The proof of concept provided
was the Schematic Protection Model (SPM).

Since SPM is traceable, it must follow that if a system that has a set of rules for access
right transfer, which can be formulated with the SPM, its security is traceable. In other
words, if you can express the system’s rules in SPM, it is traceable, and hence it can be
proven secure; a finite number of operations are needed to ensure that the system never
enters an insecure state.

24 Chapter 4. Definitions and foundations of computer security

Chapter 5

Access Control

In the discussion about secure states in Section 4.4.1, the core issue was transfer of
rights. What those rights really describe are the rights any principal has to other
principals in a system. The transitions that were described take place as some
subject access some resource in some way. Access control is about regulating which
resources that may be accessed and how.

This chapter will begin by defining the two levels that exist for access control. The
distinction between them is very important since the implications from their specification
create two entirely different models for how rights are controlled on a system. After the
theoretical foundation has been presented, a few real world examples of the two models
are presented, with the security implications and problems that have arisen in those
system.

5.1 Definitions of access control specification levels

The specification level of access control can be on either of two levels: The specifica-
tion is up to a subject or it is handled by the operating system. The definition of each
of these models follow, adapted from [Bis03].

Definition 5.1.1. If an individual subject can control the decision of an access
control mechanism so that it allows or denies access to an object, that mechanism
is a discretionary access control (DAC), also called an identity based access
control (IBAC).

Definition 5.1.2. When a system mechanism controls access to an object and an in-
dividual subject cannot alter that access, the control is a mandatory access control
(MAC), occasionally called a rule-based access control.

It is important to note that the use of one of these does not prohibit the use of the
other. If both MAC and DAC are used, both access control mechanisms must grant a
subject’s right to access an object.

5.2 Implications of different types of access control

The implications of MAC and DAC access control mechanisms are more far reaching
than one might expect. The most common by far in industry standard operating systems

25

26 Chapter 5. Access Control

today is DAC in various forms and expressiveness. All variations of UNIX1 support it, as
does Microsoft Windows2.

The main problem with DAC is that it has too many dependencies for correctness.
It depends on the correctness of the policy’s specification (cf. Chapter 6), the adminis-
trators ability to assure that all objects on the system have rights as specified and the
correctness of all tools working with the objects [Petb].

With MAC the main problem is the correct classification of subjects and objects
such that correct access rights are enforced. Another issue is the comprehensibility
of the policy specification to the MAC mechanisms [Lee95, Ken96, Ray, Peta]. That
the implementation specific specification of the policy can be hard to comprehend will
become apparent in the chapter on SELinux (cf. Chapter 8).

5.3 Real world examples

The real world is always more complex than what mere theoretical work can express,
many factors that pure theoretical settings do not need to worry about must be handled.
The provided example of the MAC system is one such example, which is able to meet
demands on the enhanced security mechanisms to integrate seamlessly with the existing
binary software.

5.3.1 UNIX System V/MLS Access Control

The Unix System V/MLS [Amo94] combines both DAC and MAC seamlessly. The discre-
tionary part resides as is expected in settings associated with the files on the system,
while the mandatory part of the access control resides as a part of the operating
system’s kernel. The fact that the mechanism for MAC resides as an isolated part of the
kernel, and is used by system calls, minimizes the intrusion of enforcement code in user
space, which is an important aspect.

It is important to note that the completeness of such an approach really depends on
the completeness of the hooks inserted into the system. That is, that all parts of the
system that change the system’s state, with respect to security, pass through the MAC
enforcement mechanism. Any relevant execution path that fails to do so will bring the
system into an insecure state.

5.3.2 SunOS

Almost all UNIX–like operating systems use DAC as their primary access control
mechanism. The SunOS3 operating system is not an exception. This ensures it, among
most existing operating systems today, a place among the implicitly insecure systems,
as is argued in [Petb].

1UNIX is a registered trademark of The Open Group
2Windows is a registered trademark of Microsoft Corporation
3SunOS is a trademark of Sun Microsystems, Inc

Chapter 6

Security Policies

Upon a decision of constructing a secure system, or making an existing system secure,
there are several issues that must be handled. First one will have to determine what is
considered secure, what threats that have to be addressed and formulate the decisions
that are reached in a way that is as unambiguous as possible [And01a, Bis03, Mar03].
Preferably this is done at the design phase upon the construction of the to be system.
The goal in this phase is to identify the secure and insecure states that describe a secure
system, as is defined in Definition 4.4.1. The identifications of threats to the system
may be done in a formal manner using for example threat trees [Amo94, And01a].

This chapter will start with a presentation of the basic definitions needed to discuss
the theory constituting the basis for security policies in a consistent manner. Then some
general theory is presented and the chapter is finished with a discussion of security as a
process and provide examples of three security policy models.

6.1 Definitions used in security policy theory

To be able to discuss the field of security policies exactly, it is necessary to introduce
definitions of the terms used. First, it is important to know the difference between
policy and mechanism [Bis03].

Definition 6.1.1. A security policy is a statement that partitions the states of the
system into a set of authorized, or secure, states and a set of unauthorized, or non
secure states.

Again, note the the use of states to define when a system is to be considered secure.
Remember that the states referred to are some set of actual settings in a system that
has been selected to represent its state, such as the objects that subjects are accessing
at a given time or the amount of processing power supplied to an entity.

Definition 6.1.2. A security mechanism is an entity or procedure that enforces some
part of the security policy.

Informally that translates to that a security policy is the specification of how a
system should maintain a secure state, and what is considered a secure state, while a
security mechanism is a part of the actual implementation enforcing the specification.
This is the same difference as in software development between the design and the
implementation stages.

27

28 Chapter 6. Security Policies

When a security policy is defined, it is usually tailored to the needs of a certain
organization. Therefore different policies will have different focal points among the
fundamental properties of a secure system (cf. Section 4.1). Many of the more traditional
policy models focus on the integrity and/or the confidentiality of a system’s information.
One such example is given in Section 6.4.1.

6.2 Security as a process

It is all too easy to see a “secure system” as a product. But the truth is that it is
more correctly seen as a process. If the bugs discovered in software, and the security
advisories that will follow upon these, are taken into account, one easily understands
that no system will be perfect from its conception.

In previous chapters, formal security in the terms of states and assignment of access
rights have been considered. In a real world problem, those issues often come down to
the following steps (adapted from material presented in [Bis03, And01a]):

1. Determine which of the three categories integrity, confidentiality
and availability that are relevant for the system

2. Identify threats to the relevant categories, using for example threat trees

3. Formulate a policy that ensures that protects against the threats identified in the
previous step

4. Check the policy’s completeness (cf. Section 4.2.3)

5. Implement the policy in the system

6. Verify the implementation (cf. Section 4.2.3)

This process may be iterated several times as new threats are identified, the policy
is revised or that new rules are set by the management.

It may appear very simple to perform these steps, but it may require quite large
amount of work to determine the threats present to a system in a real environment,
which can be very different depending on who is using it, and then categorizing them
in a consistent manner. Moreover, there is always the risk of formulating a policy that
is either too restrictive or, on the converse, too non–restrictive.

6.3 Formulation of a security policy on an organiza-
tional level

In the previous section, the process of formulating a security policy and implementing
was briefly described. This section will attempt to provide some insight to the problems
that are introduced when a security policy should be formulated in an organization. As
in most problem areas, communication is the most important aspect to consider. The
arguments presented herein is in whole based on the organizational theories presented
in [Dag98].

6.4. Examples of security policy models 29

6.3.1 Organizational issues when defining a security policy

As has been previously stated, the purpose of a security policy is to define what should
and what should not be allowed in an organization. To ensure that this is properly done,
the process of defining a security policy should incorporate information from all parts of
an organization that will access a system. This is important to ensure that the formal
restrictions that may be apparent on different levels of the organization are imposed by
the formulated policy.

However, most organizations have an hierarchy that defines the responsibilities of a
member and a related set of rules for how information should flow within that hierarchy.
Such information may be the policy portions that a department wishes to include in a
security policy. Hence, to ensure a correct and efficient formulation of a complex policy,
the organization must have a good communication infrastructure.

That enough information from each part of an organization is crucial becomes appar-
ent if one considers that the resulting policy should neither impose too much restrictions,
since that will affect productivity in a negative way, or be too loose, which will render
the policy ineffective.

The collected information should be given to a designated section within the orga-
nization to formulate a resulting policy, which then can be implemented. Or course, a
security policy can be implemented using a mixture of security mechanisms and rules
that members of the organization are required to follow.

Another reason to request information from different section of an organization’s
hierarchy is that it will at least give the members of the organization the impression of
that they had a chance to influence what the policy will govern. This will lessen the
resistance towards the policy once in place. It will also provide the management, which
in the end is responsible for the results of the policy, information on how members of the
organization feel about certain issues and what portions of the policy that might need
well formulated motivations; rules that seem to be superfluous or counterproductive will
be ignored whenever possible.

6.4 Examples of security policy models

The examples presented below range from very classical to more recently developed
models. It is important to understand that these models do not make up a policy on
their own, a system will need classification of its principals to make these work as
intended.

6.4.1 The Bell–Lapadula Model

The Bell--Lapadula Model (BLP) [Bis03] is of traditional military orientation in that
it is primarily concerned with maintaining the confidentiality of a system’s information.

The central point in the BLP is that all objects have associated security labels and
that all subjects have a clearance level. By comparing the clearance with the security
labels, access is granted or denied. Since the system clears of denies an access, the
security model describes a MAC system. The clearance and security labels are typically
made up of sets on the form:

(classification level, {categorization code(s)})

30 Chapter 6. Security Policies

An example might be:

(TOP SECRET, {EU, US})

for a document classed as “Top secret” and relevant to both Europe and the US.
To understand the idea underlining the model, the dominate operation is presented

as it is adopted from Bishop [Bis03]:

Definition 6.4.1. The security level (L,C) dominates the level (L′, C ′) iff L′ ≤ L and
C ′ ⊆ C. A subject or object is said to dominate another subject or object if its
associated security level dominates the other.

By using the dominate relation, properties can be defined such that only information
that a subject has clearance to read can be accessed, and make downgrading of a piece
of information’s security classification impossible. The two are:

Definition 6.4.2. Simple Security Condition (No read up)
A subject S can only read an object O iff S dominates O and S has discretionary
access to O.

“Discretionary access,” means that the access rights associated with the object allow
that subject to access it (cf. Section 5.1 for more information about access control).

Definition 6.4.3. *–Property (No write down)
A subject S can write to an object O iff O dominates S and S has discretionary
access to O.

This policy, if correctly enforced, will absolutely maintain the confidentiality of any
data in a system. Bishop [Bis03] discusses this model to some length, as well as pre-
senting a few of the more common critiques against it.

6.4.2 Domain Type Enforcement

In a system using Domain Type Enforcement (DTE) for access control, an access decision
to a subject or object is based upon what domains the involved subjects have, and
which types the involved objects have been assigned [Lee95, Ken96]. Accesses are also
controlled by controlling which accesses over domain boundaries subjects are allowed to
make and which types subjects from a certain domain is allowed to access. Expressed
in a more casual manner, subjects are restricted in their access to a set of objects of
approved types.

A real world example of such a policy is given in both [Lee95] and [Ken96]. In [Lee95]
examples of how the network security is hardened is given, and in [Ken96] a policy that
hardens a system’s integrity and confidentiality against some well known attacks and
some untrusted applications is presented.

That is, DTE is used to model which accesses are allowed on what is considered an
appropriate type and domain classification of all principals in a system. Exactly what
policy it enforces depends on which transitions over domain boundaries that are allowed
and from which domains subjects may access objects of different types and with which
rights they may do so.

The principal ideas behind this have strong similarities with the Schematic Protection
Model presented in Section 4.5.2 in that types of different kinds are associated with all
entities in the system and access decisions are based upon those types and a set of rules
for interpreting the context upon an access attempt.

6.4. Examples of security policy models 31

6.4.3 Role Based Access Control

An approach that has increased in popularity is to associate access rights to roles
instead of subjects. That is, a subject may assume several roles over time, and
have access rights changed automatically as transitions are done. It is also possible to
make Role Based Access Control (RBAC)–system [Rav96, Syl00] behave as systems
using more traditional access control measures, such as pure Identity Based Access
Control (IBAC, cf. Definition 5.1.1).

In a common model named RBAC96 [Syl00], the following components are used to
define roles and their associated access rights:

1. The set of users
The set of regular roles and the set of administrative roles
The set of regular permissions and the set of administrative permissions
The set of sessions

2. A relation for assignment of rights to regular roles and another relation for assign-
ment of rights to administrative roles

3. A relation for assignment of roles to users

4. A relation for assignment of administrative role to users

5. A partially ordered hierarchy of roles (i.e. like a lattice)

6. A partially ordered hierarchy of administrative roles (i.e. like a lattice)

7. A function that maps any session to a single user associated with that session.
Another function that maps a session to the set of roles and administrative roles
associated with it at a given point in time. The associated set may change over
time

8. A number of constraints that will be used to determine which values in the above
mentioned sets that are allowed

The idea is to associate a user with a session, and then bind that session to a role,
that may change over time, which will be used to associate the user with the rights that
are appropriate.

By the introduction of a hierarchy of rules, the concept of inheritance can be used to
make more powerful roles inherit the rules of less powerful ones. A typical example is
the relation between an engineer and a project’s manager. The manager will both need
to be able to access data that the engineer has access to as well as data that are of more
administrative nature, which means that the rights that should be associated with the
manager role encapsulates the rights that are associated with the engineer role. The
presentations in [Rav96, Syl00] have many good examples and discussions on the topics
briefly mentioned here.

To summarize, RBAC models what rights can be given to which subject by associating
a certain role to it and which access rights that are to be allowed are associated with
that role. The policy that it enforces is based upon those assignments.

One of the greater benefits of using this model is that it becomes very easy to change
the rights associated with a particular user in the system, since the only action needed
is to change the role that user has for the moment. For the same reason it becomes
easy to appoint new people to new positions, since all access rights associated with the

32 Chapter 6. Security Policies

tasks involved for a special position are associated with that position’s role, not with a
particular user. This makes revoking rights for the user that previously had that role
in the system and assigning them to the newly appointed a simple task, simply change
the roles for each of them.

Chapter 7

A common security policy
algebra

The chapter on security policies (cf. Chapter 6) discussed the necessity to precisely define
what is to be considered secure in a particular system. That chapter also mentions a few
example policy models, one of which where Bell--Lapadula. The exact formulation of
that model makes it clear that it is desirable to have an algebra that would be able to
express many different security models as an actual policy.

The purpose of this chapter is to introduce one such algebra which has been developed
by Wijesekera and Jajodia [Dum03a]. The algebra builds upon the well understood set
theory and propositional logic, as well as recent work in the field of theoretical computer
security. The algebra is very general and has the potential to be expressive enough to
work with several implementations of policy enforcement mechanisms. In particular, the
algebra will be used to specify an example policy in Chapter 9, which will be implemented
using the SELinux security framework.

It should be noted that although the algebra presented is developed with a DAC
system as the expected access control model, the power it lends to the user is useful
in a MAC based system as well (cf. the discussion of MAC and DAC in Chapter 5).

All content in this chapter is adapted from [Dum03a] unless stated otherwise. It
should be noted that the definitions in the section on the algebra’s semantics and syntax
differ slightly from the original due to apparent mistypings in the original definitions.
More information on this issue is presented at the same time as the aforementioned
definitions. Some finer points on what appears to be either conventions or mistakes
made by the authors of [Dum03a] will be discussed in its own section after the syntax
and semantics of the algebra have been presented.

7.1 Motivations

As was mentioned above, it is desirable to use an algebra when specifying a security
policy. Using a mathematically sound algebra will ensure that the policy specification
can be unambiguously specified, and that its correctness can be verified.

Another, but at least equally strong reason, is that two separate policies that are
expressed using the same algebra may more easily be combined in such a way that
the resulting policy is compliant with the restriction imposed by the policies that were

33

34 Chapter 7. A common security policy algebra

combined. The presented algebra has explicit support for such actions.

7.2 Algebra basics

The algebra operates on permission sets which it map onto subjects. This mapping is
performed in an nondeterministic manner, in the same sense as transitions are made in a
nondeterministic automaton [Sud97]. Hence, one of several possible mappings is selected
from a set, which is due to the fact that which set of permissions that is desirable to
use may differ depending on the situation.

Consider for instance a banking clerk. It would not be desirable, from the bank’s
point of view, to allow a clerk to both write and approve any check. The clerk should
only be allowed to either read and approve or read and write a check. This kind of
mapping is represented by the following functional mapping:

(Clerk, ∅) � (Clerk, {{check, read} , {check, write}})

The above expression is interpreted such that an initial empty permission set is
mapped onto either of the permission sets {check, read} and {check, write}, but not
both for a specific check. This kind of mapping is nondeterministic.

7.3 Syntax

The algebra’s syntax is very similar to traditional logic in that it uses a set of opera-
tors to work on strongly typed entities. This section will begin with definitions of the
basic syntax followed by an initial presentation of the operators used to denote actions
performed. More on the operators can be found in the semantics section.

7.3.1 Syntax definition

To make the definition of the algebra’s syntax more concise, a range of sets are defined.
These sets are associated with a number of algebra syntax terminal symbols.

Definition 7.3.1. These sets are associated with the algebra syntax:

– POL∗ is the set of atomic policies

– PROP∗ is the set of atomic propositions

– SETP∗ is the set of atomic (second order) set propositions

– POL is the set of policy terms

– PROP is the set of propositions

– SETP is the set of set propositions

The word “atomic” in the above definition means that the definition of the term at
hand is precise and unambiguous. Note the difference between the ∗–suffixed sets with
their non–suffixed counterparts.

The next definition associates a number of algebra terminal symbols with the above
defined sets.

7.3. Syntax 35

Definition 7.3.2. The following terminal symbols are associated with the sets defined
in Definition 7.3.1.

– patomic is a symbol taken from POL∗

– φatomic is a symbol taken from PROP∗

– Φatomic is a symbol taken from SETP∗

The algebra’s syntax is defined using Baccus Naur Format (BNF) notation [Sud97].
The operators are explained after the definition.

Definition 7.3.3. The algebra’s BNF for policies, propositions and set propositions are
as follows:

p := patomic | p t p | p u p | p � p | p � p | (Φ :: p) | (p q Φ) |
p ∪ p | p ∩ p | p− p | ¬p | (φ : p) | (p p φ)
�p | p; p | p ∗ |min(p) |max(p) | oCom(p) | cCom(p)

φ := φatomic |φ ∧ φ |φ ∨ φ | ¬φ
Φ := Φatomic |Φ ∧ Φ |Φ ∨ Φ | ¬Φ

The algebra’s BNF definition differs slightly from the one presented in [Dum03a]. The
authors mistakenly used φ instead of Φ for the outer operators. That the second order
set propositions Φ is the correct symbol can be deduced from the semantics definitions,
which are presented in Section 7.4.

7.3.2 Operators

In the previously defined syntax definition of the algebra, several operators were intro-
duced in the BNF–specification. The following is an introductory presentation of them;
exact definition of their functionality can be found in the section on semantics. However,
these examples will make it much easier to understand the definitions of the grammar’s
semantics.

The first distinction between the operators is that there are two kinds: internal
and external. The distinction lies in how the operators works with the set of rights
associated with a subject. An internal operator changes the set of rights while an
external operator changes the range of right sets. This means that an internal operator
adds or removes rights for a subject, while an external operator adds more different
sets that may be, nondeterministically, associated with the subject or removes such a
set.

The running example features a banking clerk and checks. A plus (+) sign means
granting of a right, and a minus (−) sign means removal of a right. The only rights that
are available are “read” and “write”. The only object that can have a right tied to it
is a “check.” The subject, the clerk, in all examples is denoted “c.”

Note that the definition of the policies in each example, denoted by p and q respec-
tively, have been shortened from the following form:

policy p : (c, ∅) 7→ (c, {{check, +write}})

to this more concise form to ease reading.

p = (c, {{check, +write}})

36 Chapter 7. A common security policy algebra

External disjunction operator: t

The external disjunction operator, t, enlarges the range of permission sets that may be
associated with a subject. Exactly how this works is best illustrated with an example:

p1 = (c, {{(check, +read)}})
p2 = (c, {{(check, +write)}})

p1 t p2 = (c, {{(check, +write)} , {(check, +read)}})

In the example the resulting policy allows for either read access or write access to a
check.

External conjunction operator: u

The external conjunction operator, u, limits the range of permission sets that may be
associated with a subject. It removes any sets not present in both its operands.

p1 = (c, {{(check, +read)} , {(check, +write)}})
p2 = (c, {{check, +write}})

p1 u p2 = (c, {{(check, +write)}})

In the example, the resulting policy only allows for assignment the right to write a
check, not to read one.

External difference operator: �

The external difference operator allows any right granted by the first policy after re-
moving any rights defined in the second one. This is very similar to how the familiar
difference operator in set theory works (c.f Chapter 3).

p1 = (c, {{(check, +read)} , {(check, +write)}}
p2 = (c, {{check, +write}})

p1 � p2 = (c, {{(check, +read)}})

In the example, the write access is removed from the resulting policy since the seconds
policy, p2, states that as a right.

External negation operator: �

This operator changes the right set and replaces it with the relational complement of
the current mapping. Again, this is closely tied to the well known field of set theory.

p = (c, {{(check,−read)} , {(check,−write)}}
� p = (c, {{(check, +read)} , {(check, +write)}})

The resulting policy allows either for read access or write access.

External scoping operator: ::

The external scoping operator restricts the domain of the original mapping to those
permission sets that satisfy the given set proposition1 representing the scope.

1A statement that affirms or denies something and is either true or false

7.3. Syntax 37

Φ = ∀y∀z [(y, z) ∈ X → z = +read]
where X is a free set variable

p = (c, {{(check, +read)} , {(check, +write)}})
Φ :: p = (c, {{(check, +read)}})

The proposition removes the write access right, and hence restricts the available
scope. Note that the result is the same as for the external conjunction operator, but in
this case the write access is removed by the use of a logical expression which functions
like a filter.

External provision operator: q

The external provision operator, q, restricts the original mapping to permission sets to
those satisfying the set proposition representing the provision.

Φ = ∀y∀z [((y, z) ∈ X → z = +read) ∨ ((y, z) ∈ X → z = +write)]
where X is a free set variable

p = (c, {{(check, +read)} , {(check, +write)}})
p q Φ = (c, {{(check, +read)} , {(check, +write)}})

The above example allows the mapping since both read and write actions are ap-
proved by the provision.

External sequential operator: ;

The external sequential operator, ;, permits accesses that are allowed as a consequence
of applying its second component after the first. This is very similar to how the logical
and operator works.

p = (c, {{(check, +read), (check, +write)}})
q = (c, {{(check, +write)}})

p ; q = (c, {{(check, +write)}})

External closure operator: ∗

The external closure operator, ∗, allows accesses permitted under repeated application of
its constituent policy. This operator is an extension to the external sequential operator.

This operator makes it possible to apply several policies after another an unlimited
number of time, it also introduces support for recursive construction on the external
level.

Internal disjunction operator: ∪

The internal disjunction operator, ∪, permits any union of permission sets that are
allowed under both its components. That is, the target permission set is altered.

p1 = (c, {{(check, +read)}})
p2 = (c, {{(check, +write)}})

p1 ∪ p2 = (c, {{(check, +read), (check, +write)}})

38 Chapter 7. A common security policy algebra

Internal intersection operator: ∩

The internal intersection operator, ∩, permits any intersection of permission sets that
are allowed under both its components.

p1 = (c, {{(check, +read)}})
p2 = (c, {{(check + read), (check,−write)}})

p1 ∩ p2 = (c, {{(check, +read)}})

Internal difference operator: −

The internal difference operator, −, permits set differences between its first and second
component. Just as the external variation, it is very similar to how the set theory work.

p1 = (c, {{(check + read), (check,−write)}})
p2 = (c, {{(check, +read)}})

p1 − p2 = (c, {{(check,−write)}})

Internal negation operator: ¬

The internal negation operator, ¬, changes positive permissions to negative and vice
versa.

p = (c, {{(check + read), (check,−write)}})
¬p = (c, {{(check,−read), (check, +write)}})

Internal scoping operator: :

The internal scoping operator, :, allows only those accesses that meet the scoping re-
strictions.

φ = (y, z) ∈ X → z = +write
where X is a free variable

p = (c, {{(check, +read)} , {(check, +write)}})
φ : p = (c, {{(check, +write)}})

Since there is a permission tuple in the policy’s assignment that provides something
else then +write, the resulting assignment is non–empty.

Note that the scoping removes rights before the mapping, while the provision operator
removes them after.

Internal invalidate operator: �

The internal invalidate operator, �, removes all permissions granted under that policy.

p = (c, {{(check + read), (check,−write)}})
�p = (c, {{}})

The resulting permission set becomes the empty set since all permissions are invali-
dated, that is removed.

7.3. Syntax 39

Internal provision operator: p

The internal provision operator, p, allows those permissions that satisfy the provision
denoted by a specified proposition.

φ = (y, z) ∈ X → z = +write
where X is a free set variable

p = (c, {{(check, +read)} , {(check, +write)}})
p|φ = (c, {{(check, +read)}})

Note that the provision remove rights after the mapping, while the scoping operator
removes them before.

7.3.3 Conflict resolution

Application of both internal and external operators may remove or add access rights
that conflict with each other in a permission set. To handle this situation, either the
negative or the positive right is selected in a given situation. The min and max operators
handle this.

To handle unspecified permissions either the permissions-take-precedence or
denials-take-precedence policies of rights management are used. Both of these mod-
els are supported by the use of two dedicated operators: oCom and cCom.

The four operators are used when dealing with over– and underspecified policies.

min operator

The min operator selects negative permissions over positive permissions.

p = (c, {{(check + write), (check,−write)}})
min(p) = (c, {{(check,−write)}})

max operator

The max operator selects positive permissions over negative permissions.

p = (c, {{(check + write), (check,−write)}})
max(p) = (c, {{(check, +write)}})

Permissions–take–precedence, oCom

This operator closes the policy under the open world assumption and grants any right
that is not explicitly denied.

p = (c, {{(check + read)}})
oCom(p) = (c, {{(check, +read), (check, +write)}})

The example adds the right to write a check since that right is not explicitly stated.

40 Chapter 7. A common security policy algebra

Denials–take–precedence, cCom

This operator closes the policy under the closed world assumption and denies any right
that is not explicitly denied.

p = (c, {{(check + read)}})
cCom(p) = (c, {{(check, +read), (check,−write)}})

As opposed to the oCom–operator, the right to write a check is in this example
explicitly denied.

7.4. Semantics 41

7.4 Semantics

On a semantic level, access control policies allow specified subjects to execute actions
over given objects. That is, an access policy precisely defines how subjects may
interact with objects. That this is the case is trivially apparent when considering the
access control matrix introduced in Chapter 4.

The following section begins with a few definitions that are used to more concisely
define the semantics later on. The definitions are followed by an introduction of simple
atomic policies, which are used to define the semantics of the more general non–atomic
policies and the semantics of the operators introduced in the previous sections.

7.4.1 Convenient definitions

First, the basic entities are defined in terms of the algebra, several of which are familiar
(cf. Chapter 4).

Definition 7.4.1. Subjects, objects, signed actions and roles are the basic build-
ing blocks of the semantics. Permission sets and authorization triples using our basic
building blocks are defined as follows:

1. Subjects: Let S = {si : i ∈ N} be a set of subjects

2. Objects: Let O = {oi : i ∈ N} be a set of objects

3. Signed actions: Let A = {ai : i ∈ N} be a set of action terms. Then A± =
A+ ∪ A−, where A+ = {+a : a ∈ A} and A− = {−a : a ∈ A} is said to be the
set of signed action terms

4. Roles: Let R = {Ri : i ∈ N} be a set of roles

5. Authorizations: (s,PermSet) is an authorization if one of the following conditions
hold:

(a) s is either a subject or a role and PermSet ⊆ O ×A±

(b) s is a subject and PermSet is a role

The notation AU(S,R,O,A) is used to denote the set of all authorizations
over S,R,O and A. When there is no ambiguity about S,R,O, and A, the
notation AU is used instead of AU(S,R,O,A)

(c) Permission-Prohibition Triples: Any (s, o,±a), where s is either a role
or in R or a subject in S, o an object in O and a is a signed action term
in A±, is a permission-prohibition triple. The set of all permission-
prohibition triples is denoted as T (S,R,O,A), which is shortened to T
when S, R, O and A are clear from the context

Note that actions are signed to indicate a permission or a prohibition.
For the interpretation of an atomic policy, the notion of a state is defined. A state is

used to model a per definition secure assignment of access rights for a specific subject to
a specific object. Note the similarity to the discussion on secure systems in Chapter 4.

42 Chapter 7. A common security policy algebra

Definition 7.4.2. For a given set of subjects S, objects O, roles R, actions A,
propositions PROP and set of propositions SET P, a state is a pair of mappings
(Mprop, MsetProp), where:

Mprop : PROP 7→ ℘(T)
MsetProp : SET P 7→ ℘(℘(T))

As the definition says, a state is defined as a tuple of mappings. The Mprop mapping
describes the mapping from propositions to all permission-prohibition triples that
satisfy the proposition. The MsetProp mapping describes the mapping from the set of
propositions to the permission-prohibition triples set that fulfills the set proposi-
tions.

Hence the above mapping, a state are determined by the set of propositions satisfied
in them. By using propositions in the definition of a state, the provision and scoping
operators are assigned meaning. The set of all states is called STATES.

7.4.2 Atomic policies

An atomic policy is a policy that only includes well defined sets, no operators are involved
to change any of the operands. Due to this, atomic policies are used as a base case when
defining the semantics for operators in the next section.

The interpretation of an atomic policy is defined below.

Definition 7.4.3. An interpretation of atomic policies MAtPolicy is a mapping from
STATES×POL∗× (S ∪R)×P(O × A±) 7→ STATES× (S ∪R)×P(P(O × A±))
satisfying the condition that for any (s′, P ermSet′) ∈ MAtPolicy(St)(p)(s, PermSet),
s′ = s.

The definition says that an atomic policy maps an assignment of authorizations to
a subject or role in a certain state to a set of authorizations assigned to the same
subject or role in a possibly different state (cf. the definition of a state above in
Definition 7.4.2). The condition s′ = s ensures that the same subject or role is being
considered in both states.

It is important to note the following inconsistency in the definition: The function
maps a tuple to another tuple. The last line of the definition, though, handles the result
of the function appliance as if it was a set. This inconsistency surfaces again in the
semantics definition below in Section 7.4.3 and is commented on in Section 7.4.5.

To be able to extend the interpretation of atomic policies to non–atomic policies, the
notion of negating permission sets needs to be defined.

Definition 7.4.4. If PS ⊆ O × A± is a permission set, then let−PS denote {(o,−a) :
(o,+a) ∈ PS} ∪ {(o,+a) : (o,−a) ∈ PS}. If r ∈ R is a role, then (o,−a) ∈ r and
(o,+a) ∈ −r iff (o,−a) ∈ r.

The definition says that negating a right changes a permission to a prohibition and
vice versa.

7.4.3 Non–atomic policies

The semantics of non–atomic policies is defined recursively with the definition of an
atomic policy as the base case.

7.4. Semantics 43

Definition 7.4.5. The interpretation of a non–atomic policy, Mpolicy, is defined by
using the previous definition of an atomic policy, MAtPolicy.

1. Mpolicy(St)(p) = MAtPolicy(St)(p) for all policies p and states St

2. Mpolicy(St)(p t q)(s, PermSet) =
Mpolicy(St)(p)(s, PermSet) ∪ Mpolicy(St)(q)(s, PermSet)

3. Mpolicy(St)(p u q)(s, PermSet) =
Mpolicy(St)(p)(s, PermSet) ∩ Mpolicy(St)(q)(s, PermSet)

4. Mpolicy(St)(p � q)(s, PermSet) =
Mpolicy(St)(p)(s, PermSet) \Mpolicy(St)(q)(s, PermSet)

5. Mpolicy(St)(� p)(s, PermSet) =
{(s, PS) : PS ∈ PS} \Mpolicy(St)(p)(s, PermSet)

6. Mpolicy(St)(Φ :: p)(s, PermSet) = Mpolicy(St)(p)(s, PermSet),
if (s, PermSet) ∈ MsetProp(St)(φ) else ∅

7. Mpolicy(St)(p q Φ)(s, PermSet) =
Mprop(St)(p)(s, PermSet) ∩ MsetProp(St)(φ)

8. Mpolicy(St)(p; q)(s, PermSet) =
{(s, PermSet) ∈ Mpolicy(St′)(q)(s, PermSet2) :
for some (s, PermSet2) ∈ Mpolicy(St)(p)(s, PermSet)}

9. To define Mpolicy(St)(p∗)(s, PermSet), inductively define Mpolicy(St)(pn) using
the following rules:

(a) Mpolicy(St)(p1) = Mpolicy(St)(p)

(b) Mpolicy(St)(pn+1) = Mpolicy(St)((p; pn) ∪ pn)

(c) Mpolicy(St)(p∗) =
⋃

n∈ω Mpolicy(St)(pn)

10. Mpolicy(St)(p ∪ q)(s, PermSet) =
{(s, PermSetp ∪ PermSetq) :
(s, PermSetp) ∈ Mpolicy(St)(p)(s, PermSet) and (s, PermSetq) ∈ Mpolicy(St)(q)(s, PermSet)}

11. Mpolicy(St)(p ∩ q)(s, PermSet) =
{(s, PermSetp ∩ PermSetq) :
(s, PermSetp) ∈ Mpolicy(St)(p)(s, PermSet)and(s, PermSetq) ∈ Mpolicy(St)(q)(s, PermSet)}

12. Mpolicy(St)(p − q)(s, PermSet) =
{(s, PermSetp\PermSetq) :
(s, PermSetp) ∈ Mpolicy(St)(p)(s, PermSet) and (s, PermSetq) ∈ Mpolicy(St)(q)(s, PermSet)}

13. Mpolicy(St)(¬p)(s, PermSet) =
{(s,−PermSet′) : (s, PermSet) ∈ Mpolicy(St)(p)(s, PermSet′)}

14. Mpolicy(St)(φ : p)(s, PermSet \ {(o, a) : (s, o, a) /∈ Mprop(St′)(φ)}) = M
if Mpolicy(St)(p)(S, PermSet) = M

15. Mpolicy(St)(p|φ)(s, PermSet) = M provided that
Mpolicy(St)(p)(s, PermSet) = {(s, PermSet) \ {(o, a) : (s, o, a) /∈ Mprop(St)(φ)})},
where Mpolicy(St)(p)(s, PermSet) = M

44 Chapter 7. A common security policy algebra

16. Mpolicy(St)(max(p))(s, PermSet) =
{(s, PermSet1) : PermSet1 = PermSet2 \ {(o,−a) : (o,+a), (o,−a) ∈ PermSet2}
for some (s, PermSet2) ∈ Mpolicy(St)(p)(s, PermSet)}

17. Mpolicy(St)(min(p))(s, PermSet) =
{(s, PermSet1) : PermSet1 = PermSet2 \ {(o,+a) : (o,+a), (o,−a) ∈ PermSet2}
for some (s, PermSet2) ∈ Mpolicy(St)(p)(s, PermSet)}

18. Mpolicy(St)(�p)(s, PermSet) = (s, ∅)

19. Mpolicy(St)(cCom(p))(s, PermSet) =
{(s, PermSet1) : PermSet1 = PermSet2 ∪{(o,−a) : (o,−a), (o,+a) /∈ PermSet2}}
for some (s, PermSet2) ∈ Mpolicy(St)(p)(s, PermSet)

20. Mpolicy(St)(cCom(p))(s, PermSet) =
{(s, PermSet1) : PermSet1 = PermSet2 ∪{(o,+a) : (o,−a), (o,+a) /∈ PermSet2}}
for some (s, PermSet2) ∈ Mpolicy(St)(p)(s, PermSet)

The definition’s items 6 and 7 have been edited to use a proposition from the correct
set. The original definition used φ, which is apparently wrong since the mapping used
to restrict the permissions that are allowed operate using sets.

Moreover, the definition’s items 14 and 15 have been edited from the original one,
presented in [Dum03a], to what appears to be the intended semantics definition. The
corrected expression is equivalent to that presented in an older paper by the authors
which only covered internal operators (cf. [Dum03b]).

7.4.4 Clarification of the semantics definition

The single most complex thing about the algebra is the definition of its semantics. Due
to this a discussion of a few points that may or may not be hard to grasp is discussed.
If in doubt, read the description of the operators in Section 7.3, in which the algebra’s
syntax was presented. The indented operation of all the operators is presented there.

For all policies, the state is made up of the mappings defined in 7.4.2. This means,
that for each application of the policy transformer of the authentication set, there will
be two well defined sets of first and second order propositions, respectively. Due to this,
one may explicitly state what propositions the policy should fulfill, which is done in the
definition of the provision and scope operators.

The reason why the external operators use set propositions and internal operators
uses propositions becomes apparent if the definitions are read carefully: The external
operators map the proposition onto an entire permission set, while the internal operators
map a proposition onto each element in a permission set.

The closure operator, ∗, is mutually recursive with the definition of the sequential
operator, ;, and the internal disjunction operator, ∪.

7.4.5 Discussion of the definition’s inconsistencies

As mentioned in the definitions in the previous sections, some inconsistencies can be
found in the definitions used in the algebra. All definitions are cited from [Dum03a],
with a few syntactic correction. Correction of the internal provision operator definition
was performed by using the older paper [Dum03b].

7.5. Examples 45

The algebra’s semantic definition begins with the definition of an atomic policy’s
interpretation. It states that a tuple of several, mathematical, objects that map onto
another tuple, which too consists of several mathematical objects. However, the usage
of the result from a transformation made by the policy function is treated as if it was
a set elsewhere in both the definition of the policy interpretation and in the semantics
definition.

Moreover, one may wonder over the use of the set theoretical conventions, disjunction
and difference operators in the definition of the external operators: They are supposed
to operate on the permission sets, but do not explicitly state that this is the case, but
rather that they should operate on the result of the mapping ultimately performed by
an atomic policy specification.

However, this may be a problem that arises from different conventions which may
be attributed to field specific conventions. It may for example be assumed that the
interpretation simply states how the definition should be read, and that the actual
structures operated upon are are the intended set of mappings of access rights to objects
for subjects.

7.5 Examples

To clarify the use of the algebra, several simple examples are provided to illustrate the
strength of several of the algebra’s operators.

7.5.1 A trivial example

This example shows an atomic policy, that is a simple definition of the rights that are
assigned to a subject over an object.

Assume an object o is available in a system and that a subject s will have an
interest in reading, writing but not executing this object. The following policy definition
assigns those rights as is appropriate.

policy p : (s, ∅) 7→ (s, {{(o,+read), (o,+write), (o,−execute)}})

This is also called an atomic policy; no operators are involved and it can be precisely
interpreted using Definition 7.4.3.

7.5.2 Combining access control specification for a user

For a combination of two policies defining the access rights for a user, or subject, it is
logical that the range of permissions that may be assigned is increased. This is practical,
since the logical way to define access rights is to handle them one at a time.

Assume the subject is called s, the objects of interest are o1 and o2 and that the
only permissions that need to be considered are the signed permissions write, read and
execute.

policy p : (s, ∅) 7→ (s, {{(o1,+read), (o1,+write), (o1,−execute)}})
policy q : (s, ∅) 7→ (s, {{(o2,−read), (o2,−write), (o2,+execute)}})
p t q = (s, {{(o1,+read), (o1,+write), (o1,−execute)},

{(o2,−read), (o2,−write), (o2,+execute)}})

46 Chapter 7. A common security policy algebra

7.5.3 Conflict resolution with restriction and closing

If in the previous example, both policies had been concerned with the same object,
and the internal conjunction operator had been used, there would have been a conflict
since the access rights would have conflicted. The following policy definitions depict the
situation:

policy p : (s, ∅) 7→ (s, {{(o,+read), (o,+write), (o,−execute)}})
policy q : (s, ∅) 7→ (s, {{(o,−read), (o,−write), (o,+execute)}})
p ∪ q = (s, {{(o,+read), (o,+write), (o,−execute),

(o,−read), (o,−write), (o,+execute)}})

To resolve this, a conflict resolution operator is applied. There are two of them, one
giving restrictions precedence, min, and one giving permissions precedence, max.

min(p ∪ q) = (s, {{(o,−read), (o,−write), (o,−execute)}})
max(p ∪ q) = (s, {{(o,+read), (o,+write), (o,+execute)}})

If some permissions granted are inappropriate and should be removed, the internal
scoping operator could be applied. Say, for example, that the right to write to the
object is undesirable, since it will be executable, is inappropriate. The following use of
the internal scope operator removes it. X is assumed to be a free set variable.

a = max(p ∪ q) = (s, {{(o,+read), (o,+write), (o,+execute)}})
φ = ((y, z) ∈ X → y 6= −write) ∨ ((y, z) ∈ X → y 6= +write)

b = φ : a = (s, {{(o,+read), (o,+execute)}})

However, assuming that the only rights in the system are write, read and execute,
the resulting policy b is not closed. Using the completion operators for the closed world
assumption, cCom, a resulting policy that does not provide the unwanted right to write
to the object.

cCom(b) = (s, {{(o,+read), (o,−write), (o,+execute)}})

Note that if the open world assumption had been used, by applying the oCom
operator instead of the cCom operator, permissions not explicitly denied had been
granted, undoing the operation performed by the internal scoping operator.

7.6 Multilevel security

Multilevel security policies (i.e. Bell–Lapadula discussed in Section 6.4.1) require sup-
port for comparing labels assigned to subjects and objects. The algebra presented
does not inherently support such operations. The method described in this section will
provide a useful method to provide limited support for such usage. First the actual
working of the policy is observed, and with these observations as basis a complement
to the way the algebra is used is presented to extend that behaviour in a non–intrusive
way.

Note that this extension has not been formally tested in any way, its soundness is
only argued to be correct.

It is assumed that the cCom operator will be used to close the resulting policy.

7.6. Multilevel security 47

7.6.1 Observations on the algebra’s operations

The first thing one should realize when observing the algebra’s way of specifying a policy
is a transformation of the permission set and that this permission set exactly defines the
access rights to an object for some subject. This closely resembles an access matrix,
which fully specifies all access rights all subjects have over all objects.

Second, it may be noted that this leaves no room for the usage of levels in the algebra
at transformation time, that is when an atomic policy is applied.

7.6.2 Simple multilevel security extension

To make the algebra more useful in the case of multilevel security (MLS), a simple
extension of the previously defined algebra is presented.

First, the notion of a security level and classification is described.

Definition 7.6.1. The set of classifications is defined to be C = {ci : i ∈ N},
where ci is the object’s classification

The set of security levels is defined to be L = {li : i ∈ N}.
Second, the following definitions describe the coupling of objects to classification

and subjects and roles coupling to clearance.

Definition 7.6.2. Let all objects o ∈ O be associated with a classifications set
{c : ∀c ∈ C} and a security level l ∈ L, which is ordered accordingly to the dominate
relation in a lattice and l is the highest classification that the object may have.
Let (o, c, l) be the association of a classification and a security level with an object.

Definition 7.6.3. Let all subjects s ∈ S be associated with a classifications set
{c : ∀c ∈ C} and a security levels l ∈ L, which are ordered accordingly to the dominate
relation in a lattice and l is the highest security level the subject may have. Let
(s, c, l) be the association of a clearance with a subject.

Let all roles r ∈ R be associated with a security level and a security level in
the same manner as objects. Let (r, c, l) be the association of a classification with
a role.

Note that the subject have been assigned the highest clearance that it may operate
under. This effectively makes the policy specification coarse with respect to that it does
not support a dynamically changing clearance. If it seems strange that an object
potentially could be assigned a dynamic range of classifications, consider a directory,
which under some policies might be considered to have the classification of the
highest classified file which it contains.

Third, a set of propositions that fulfill a MLS criteria that is imposed on the subjects
and objects is defined.

Definition 7.6.4. Let SETMLSP be a set proposition that compares the clas-
sification and security level of an object to the clearance and classification
of a subject.

The definition of SETMLSP is now used to define a mapping MSETMLSP that is
similar to Mprop and MsetProp.

Definition 7.6.5. Given a MLS set proposition, from the class SETMLSP , let the
mapping MSETMLSP : SETMLSP × PermSet 7→ ℘(T) be the mapping of that set
proposition to the set of permission–prohibition triples that fulfills the set proposition,
which can be obtained from the supplied permission set.

48 Chapter 7. A common security policy algebra

Finally, the following policy mapping is presented to remove the multilevel security
portion from the (s, c, l) and (o, c, l) tuples. This must be done so the existing policy
mapping correctly handles the policy specification. The following rule is assumed to be
applied before any of the operators or any one of the MAtPolicy or Mpolicy is applied.
If the mapping types are carefully studied you will see that the resulting type of the
mapping is the one presented in Definition 7.4.3.

Definition 7.6.6. An interpretation of MLS policies MMLS is a mapping SETMLSP ×
STATES × POL∗ × (C × L × S ∪R) × P(C × L × O × A±) 7→ STATES ×
(S ∪R) × P(P(O × A±)), which is expressed as:
MMLS(mls)(St)(p)((s, cs, ls), P ermSetmls) = Mpolicy(St)(p)(s, PermSet),
where PermSetmls is a set consisting of (co, lc, (o, a)) tuples and PermSet = {(o, a) :
(s, o, a) ∈ MSETMLSP (mls)

This means that all portions of the MLS extensions will be removed by the operation
of MMLS and result in a call to Mpolicy. Note that the policy set used in the definition is
the set of atomic policies POL∗ (cf. Definition 7.3.1). This restriction was deliberately
chosen to avoid the need to redefine the semantics for the algebra’s operators in this
simple extension.

The definition simply removes all permission sets in PermSetmls before calling the
Mpolicy mapping to ensure proper access is allowed, with respect to the proposition that
generates the contents of the set SETMLSP .

7.6.3 Example usage of the multilevel security extension

The following examples illustrates the usage of the MMLS mapping with a specific second
order proposition.

The policy is assumed to govern a system consisting of two objects o1, o2 ∈ O with
the classification c ∈ C, and two subjects s1, s2 ∈ S with assigned security levels
l1, l2 ∈ L, respectively, and classification c ∈ C. Level l1 is higher than level l2, that is
l1 > l2. The access rights present in the system are ±read and ±write.

The MLS policy of the system states is assumed to enforce that a subject must
dominate (cf. Section 6.4.1) any object that it wishes to access. To enforce such a
policy, the following predicate should be used during application of the MMLS mapping:

ΦMLS = ∀(x, y, (z, w))[(x, y, z, w) ∈ X 7→ (x ⊆ co) ∧ (y ≤ ls)]

Where X is a free set variable, ls is the security level of the subject, and co is
the classification of the object. All of these are made present during the interpretation
defined in Definition 7.6.6.

Now it may be assumed that access right have been assigned to each subject for
each object, in three policies pMLS , qMLS and rMLS while using the MLS specific
extensions. The resulting policies are to be combined, which is performed by applying
the MMLS mapping to each of them before applying the Mpolicy mapping to them to
obtain an atomically specified, combined, policy. The policies are presented below:

pMLS : ((s1, c, l1), ((o1, c, l2), ∅)) 7→ ((s1, c, l1), (c, l2, ({(o1,+write)})))
qMLS : ((s2, c, l2), ((o1, c, l1), ∅)) 7→ ((s2, c, l2), (c, l1, ({(o1,+read)})))
rMLS : ((s2, c, l2), ((o2, c, l2), ∅)) 7→ ((s2, c, l2), (c, l2, ({(o2,−write)})))

7.7. Discussion 49

All of these policies are now to be translated into their respective atomic form and
combined in an appropriate way, that is per subject, which is defined in Definition 7.4.3.
Note that the input to the MMLS is a bit shortened since it is apparent from the above
definition of the policies pMLS , qMLS and rMLS what the following parameters to the
mapping should be.

p : MMLS(ΦMLS)(St)(pMLS) = (s1, ∅) 7→ (s1, {(o1,+read)})
q : MMLS(ΦMLS)(St)(qMLS) = (s2, ∅) 7→ (s2, ∅)
r : MMLS(ΦMLS)(St)(rMLS) = (s2, ∅) 7→ (s2, {(o2,+read)})

Notice how all rights are removed from the mapping q when mapping translating
from qMLS . This is due to that the subjects level, l2 being lesser than that of the
object, l1.

The policies can after this translation from the MLS extended version be combined
using the previously presented internal and external operators (cf. Sections 7.3, 7.3.2
and 7.4).

7.7 Discussion

The algebra presented in this chapter is very powerful if used correctly. However it is
very complex and the definitions used to specify its behaviour are non–trivial to grasp. A
good idea would probably be to rework this algebra, and then ensure that all definitions
uses the standard form of mathematical operators. Such a reworking is actually rather
trivial, but it would be too intrusive on the original presentation given in [Dum03a] to
be appropriate for this thesis.

50 Chapter 7. A common security policy algebra

Chapter 8

Security Enhanced Linux

SELinux, one of the most active MAC framework for Linux, is a well functioning tech-
nology given away for free by the NSA. The framework is very flexible with a clean
separation of policy specification and enforcement mechanisms. This fact shows with
the relative ease that it can be configured to enforce vastly different kinds of security
policies.

This chapter begins with a short presentation of SELinux’ history, continues with a
discussion of the implementation’s architecture and is concluded with a discussion on
policy support and a few tasks that are involved in configuring a policy. In particular,
the contents of Section 8.5 is important with its description of the security models that
are implemented in the SELinux security framework; that section provides an easily
accessible overview of how the enforcements mechanisms work together to provide the
protection for the system.

8.1 Pre–Linux history

SELinux can trace its origin back to a security platform developed from the Fluke
microkernel [And01b], Flask [Ray]. The motivation behind the development of Flask
was that existing security platforms lacked at least in one of the areas of access right
propagation, fine–grained access control and the revocation of previously granted access
rights.

Flask remedied all of these limitations by making sure all parts of the system that
must conform to a security policy mediated all system actions with a security server.
Moreover, the system had a clean separation of policy specification and implementation.
That is, the policy was not explicitly hard coded into the system, but was separately
specified. In Flask’s case, this was done with a set of configuration files. This explicit
separation of implementation and specification of a security policy differ greatly with
most of the traditional MAC systems that have been implemented, since those sys-
tems tended to have the policy hard coded directly into the policy enforcement mecha-
nisms [Bis03, Amo94].

51

52 Chapter 8. Security Enhanced Linux

8.2 SELinux history

Originally, the SELinux implementation was a huge patch to the bare kernel explicitly
extending a lot of the data structures it used internally to handle operations concerning
files, communications etc.

Although, after a presentation of the framework, a suggestion from Linus Torvalds
set off the Linux Security Modules (LSM) project. The project introduced a set of
hook functions into the kernel, which can be used to enforce a quite fine grained access
control [Steb]. These hook functions are a set of function pointers that are made a part
of relevant data structures in the kernel. The functions specified by using these pointers
are supposed to be used when making access decisions.

SELinux has since the introduction of LSM in the Linux kernel been ported to the
LSM–based model of access right enforcement.

8.3 Architectural overview, Flask and SELinux

Not very surprisingly, the SELinux architecture is very similar to that of the Flask
architecture since it is a direct port of the MAC functionality found in the latter system;
most of the architectural components have direct functional counterparts in Flask when
comparing to the SELinux implementation.

8.3.1 Major components

Flask, being a microkernel system [Ray], has two major parts that are involved in an
access decision: the object manager, which handles the kernel level details of some
entity in the system such as files or processes, and the security server, which handles
all decision making on accesses.

Linux, not being a microkernel system, but rather a traditional monolithic ker-
nel [And01b], does not have object managers. The counterparts are called kernel subsys-
tems, and those have the corresponding responsibilities of handling kernel space details
of entities in the system. The security server is located in the LSM compliant mod-
ule.

The enforcement of policy decisions are made in the kernel subsystems, from which
negotiations with the security server are done. The negotiation is performed by the
calling of the LSM specified security hook functions.

To speed up operations, a cache with previously calculated policy decisions is main-
tained. In Flask, each object manager had such a cache. Under SELinux the cache is
more centralized to the module due to the LSM compliant design.

Policy revocation and reload was a major concern when the Flask security system was
implemented [Ray]. Hence Flask supports reloading of security policies and revocations
of previously granted rights during system runtime, this feature is also available under
SELinux [Petc].

The security server is the one entity that makes policy based decisions under
SELinux. Hence the security server may be perceived as the larger portion of security
subsystem’s TCB. The other, in kernel, TCB parts are the LSM hooks that are used to
utilize the security server. The rest of the TCB–like parts of SELinux are the user
land tools used to compile the policy configuration and load it into kernel space.

8.3. Architectural overview, Flask and SELinux 53

8.3.2 Access decisions

SELinux works with the original Linux DAC security model in that SELinux first checks
if it can allow an access, and then traditional permissions are checked as well. So,
SELinux does not replace the original access security model, but rather adds another
layer of security.

Since MAC systems associate a label with all objects in a system, and making an ac-
cess decision compares that label with the authorization level of a subject that attempts
to access the object, the SELinux architecture must have some way of representing labels
efficiently so that performance does not suffer too bad due to handling of large amounts
of in-kernel data. Since all access decisions in SELinux go through the security server,
it is used to create an efficient mapping between the needed labels and their more effi-
cient representation. This is needed due to the large amount of objects handled by the
kernel. To be able to handle this rather high number of objects present in a system,
there are two data types used to map an object to the access rights associated with it:
a security context and a security identifier (SID) [Petc, Peta, McC04].

The security context is represented as a string and each of these have a corre-
sponding SID, which is passed back to the kernel subsystems to be used for labeling of
objects created therein. It should be noted that the SID is not exported from kernel
space, and is hence not used to mark files in the file system in any persistent manner.
How files are marked are discussed below.

To check whether an attempt to access an object should be allowed, a kernel sub-
system passes the SID of an object to the security server. The SID is translated
to a security context, which is then used by the security server to make a policy
compliant decision for the access request originally issued to the subsystem.

8.3.3 Files and persistent state

Since the SID to security context mapping above is non–persistent, another type of
mapping must be used for persistent objects such as files.

The first solution for storing the security contexts for files was to store both the
Persistent SID (PSID) to inode mapping and the PSID to security context mapping
on each file system, in its own dedicated file. Of course this was not a good solution
with respect to performance since all accesses to any file’s security context had to
access a separate file [Steb, Peta].

When the 2.6 series of the Linux kernel was released, the implementation was changed
to store the security context in the extended file system attributes that were intro-
duced in that release [Steb]. The attributes are special settings, which are present in
each file’s vnode, which enables efficient storage of each file’s security attribute in
a, for each file, more localized manner as opposed to storing each security context in
a separate file. More so, it is less error prone, since there is no single point of failure as
in earlier releases; if the mapping file was corrupted, it would have to be rebuilt.

Although the use of extended attributes to store each file’s security attribute is
more a logical way to store it, it also limits which file systems can be used with SELinux.
ext2, ext3 ReiserFS and XFS file systems supports extended attributes, and have been
used at some point with SELinux. One of the most used file systems is ext3, the default
file system on Fedora Core1. Other file systems may or may not be SELinux compliant.

1Fedora Core is a trademark of RedHat, Inc.

54 Chapter 8. Security Enhanced Linux

8.4 SELinux LSM implementation

The LSM implementation of the Flask framework is the current implementation of the
SELinux framework, and the one currently supported by the community. The parts
described here have been mentioned in previous sections, so some of the contents will
be familiar.

8.4.1 The security module’s internal architecture

The internal structure of the SELinux security module are made up of six parts, some
of which diverse from the original Flask implementation in functionality and existence,
and some that correlate directly with the Flask counterpart. A short description of each
of these components will be given [Steb]:

1. Security Server
This part of the module implements the Flask architecture’s security server,
handling all policy related decisions

2. Access Vector Cache (AVC)
The cache holds previous access decisions made by the security server. The
cache is used to enhance the performance, since the decision process is a relatively
expensive process

3. Network interface table
Parts of the LSM projects suggestions concerning network interfaces were rejected.
The parts rejected forces SELinux to internally keep a mapping between network
interfaces and security contexts

4. Netlink notification code
Uses the Linux NetLink notification system [Sal, Lin] to notify processes of policy
changes. These notifications are used by the user space SELinux library, libselinux,
to keep the library’s internal state consistent with that of the kernel module’s

5. SELinux pseudo file system
This pseudo file system exports the security server API to processes. This can
be compared with for example the proc pseudo file system, which exposes process
information to user space

6. Hook functions’ implementation
These functions are used to initialize the hook functions specified by LSM through-
out the kernel’s data structures. These functions constitute the entry points for
all access decisions to be governed by the SELinux security model in kernel space.
Technically, a hook function is a function pointer in C, the language that Linux is
written in

As can be seen in the list, much of the components are there to provide support for
user space enforcement of a policy. In other word, to give programs running in user
space, that not in-kernel, the necessary tools to function smoothly with the policy that
is being enforced by the security mechanisms (cf. Section 6.1.2).

8.4. SELinux LSM implementation 55

8.4.2 Module initialization

Due to the diversity of subsystems that are controlled by SELinux, the module is not fully
configured until the policy specification is loaded by the system program /sbin/init.
The split of the initialization is directly related to internal initializations of subsystems
in the kernel [Steb].

The initialization steps are (a more detailed description may be found in [Steb]):

1. Initial initialization. The module sets up its internal state, initializes the AVC
and registers itself as the primary LSM security module in the kernel, making the
previous primary security module secondary

2. Initializes the netfilter hooks for control of outgoing packets

3. Initializes the internal network interface table, registers a notifier so that the table
will be aware of whether a network interface is brought up or down. This is done
so that entries can be removed from the table as is needed. Lastly, it registers
with the AVC so that the entire table can by flushed upon a policy reload

4. Initializes the NetLink interface to user space for policy load events. As previously
mentioned, this is used by the user space SELinux library to keep an internal state
consistent with that in the kernel

5. Initializes the SELinux pseudo file system

6. Initializes everything that needs to be initialized on each mounted file system

Anyone familiar with UNIX2–like operating systems will see the correlation between
the module’s initialization steps and the initialization steps performed during a boot of
such a system.

8.4.3 Module issues

In case the policy used allows for module unloading, it may be possible to unload the
SELinux LSM module. If such an action is performed, any action that creates or changes
an object will result in that object being unlabeled, forcing a manual relabeling of
such objects. The same is true if a machine with SELinux installed is booted with
the security framework deactivated. Luckily a tool for automatic relabelling of files is
present in the SELinux distribution, namely setfiles, which will update the security
contexts accordingly to the presently active policy when invoked by an administrator.

2UNIX is a registered trademark of The Open Group

56 Chapter 8. Security Enhanced Linux

8.5 Policy support and its representation in SELinux

SELinux is a rather complex system. The great flexibility also introduces a steep learn-
ing curve for using the system.

In this chapter, the basic components of SELinux are introduced, together with
an introduction to the steps needed to configure the framework to enforce a locally
specified security policy. It is highly recommended that this section is read carefully
since it outlines the security models used in the framework and how they work together
to provide protection to a system.

8.5.1 Overview of the SELinux security model

The security server implemented for SELinux has support for a very wide range
of policies. This is due to the model that the server uses internally. SELinux uses a
combination of:

– Identity Based Access Control (IBAC, cf. Section 5.1.1)

– Role Based Access Control (RBAC, cf. Section 6.4.3)

– Type Enforcement (TE, cf. Section 6.4.2)

The IBAC portion of the security, is usually implemented using the well known
process of presenting some proof for being a specific subject, with the right to use
some system identity, during the login process. The user is then associated with an
identity internal to the security server, that is, it is independent of the rest of the
system.

The use of IBAC ensures that a precise mapping of an identity can be made onto
a RBAC policy. The RBAC policy controls which roles that a user may assume and
how such a transition may occur. A subject will also be assigned a default role upon
logging in to the system.

The RBAC specification in SELinux differ from that in ordinary RBAC specifications
(cf. [Rav96, Syl00]) in that each role specifies which domains it may enter, and leave the
permission assignment for each domain to the TE configuration.

The configuration of the TE policy then explicitly grants all allowed accesses by stat-
ing which types may interact with each other. SELinux handles domains different from
the traditional TE in that domains are treated as types associated with subjects and
processes while pure types are associated with objects (cf. Section 6.4.2 and [Lee95]).
This distinction, though, is only enforced by the policy compiler. By handling types
this way, SELinux can use a single table for all access right specifications.

The reason that roles are used to control which TE domains that a subject is allowed
to be entered, is that it makes the configuration more easy to manage since a user may
assume several roles; it provides a reasonable level of abstraction.

An example of this configuration is given in Figure 8.1. In that figure a subject
claims an identity by presenting an identifier for that identity and some kind of proof of
that he/she has access as that identity. The identity is then used to check which roles
that the subject may assume accordingly to the RBAC configuration. Those roles in
turn state which domains the subject may enter, and those domains together with the
TE lookup table state which objects the subject may access. This is done, as explained
above, by checking the access permissions between the security context of the subject
and the security context that is associated with the object that the subject wishes to.

8.5. Policy support and its representation in SELinux 57

Figure 8.1: A subject claims an identity and provides some proof of that he/she has
access to that identity. The identity maps into the RBAC configuration which states
which roles he/she may assume. The roles that the subject may assume states which
domains that may be entered. Assuming that the user entered “Role 1” he/she then
attempts to access an object of “Type 1” from “Domain 2”. The access is checked
against the TE table with allowed accesses

58 Chapter 8. Security Enhanced Linux

In the example the subject wished to access an object of type “Type 1” from a domain
“Domain 2” while in “Role 1,” which presumably is the default role of the subject.

Note that just as in standard RBAC, only one role may be assumed at a time. If roles
should be changed, it must be done explicitly. SELinux provides a command for this
called newrole.

8.5.2 Policy languages

The interface to the SELinux framework is primarily made up of two parts: Indirectly
through the configuration of what security contexts each file on the file system should
be labeled, and more directly through the policy language. The policy language is a
high level language that is compiled into a binary representation, and then loaded into
kernel space using a dedicated program.

It is important to realize that the compiled binary form of the policy is independent
of the high level language that is chosen to configure the policy; the factor that controls
what language that can be used for configuration is what languages that have compiler
support. The current policy language (cf. [McC04] for a rather complete description) is
used together with the m4 macro language [Pro] to provide a rather easy to use scripting
interface to the policy configuration. However, recently suggestions have been made as
to develop a newer policy language that removes the need to use m4 macros [pla].

8.5.3 Available SELinux policy configurations

Originally SELinux came with a standard configuration that effectively secured many
aspects of the systems that used it. Although the policy had specific example configura-
tion for a set of programs, the policy is generally too restrictive to function unmodified in
general. As an answer to this problem, the targeted policy configuration was introduced.

The targeted SELinux configuration secures a number of programs, most notably
daemon type programs, such as web and mail servers. The idea is to secure the system
one program at a time, making the configuration well fit for the functionality provided
by actual systems.

However, a few problems arises with the targeted policy. Currently, the support for
multilevel security is not complete. Moreover, it is not as easy to configure as it should
be. Especially the later issue motivated the creation of yet another policy formulation,
which is built upon the strict and the targeted security policy: the reference policy [Sec].
The reference policy is constructed in a very modular manner, and is well documented.
In practice, this is the a reformulation of the strict and targeted policy configuration in
a manner that is more easily handled. In the future the goal is to enable the reference
policy to handle different portions of the policy configuration as standalone modules,
which will make it possible to, for instance, update a specific portion of the policy
without the need to recompile the entire policy. The modular organization of the policy
makes it more appropriate to use with tools, since each part can be easily edited on its
own.

The question that arises is: “Which of the configurations should one select?” The
answer varies from case to case. The strict policy will almost certainly require some tun-
ing to function well with an existing system, but will provide much more policy enforced
protection than the targeted policy configuration. The targeted policy configuration on
the other hand does not provide as complete a protection as the strict one, but does
provide an extra layer of security for the locked down programs. The reference policy

8.5. Policy support and its representation in SELinux 59

configuration on the other hand is under active development, and provides most of the
protection available under the other configuration, plus additional improvements. The
conclusion is that which policy that is selected depends on time, and available expertise
for configuration of a policy. There is however very few reasons to not use the reference
policy if available.

Much information on actual configurations is available via the Fedora Core web-
site [Fed], and the reference policy configuration’s website [Sec].

8.5.4 Multilevel security

Aside from the role and type based access control, SELinux has support for the more
traditional Multilevel Security (MLS) such as Bell–Lapdula as well. This is enforced
by adding a classification range to each subject and object, a clearance range
to each subject and a label range to each object.

The policy grammar can be used to base access decisions on the effective, or current,
clearance and label of a subject and the classification and label of an object
that is to be accessed. This way, it is possible to enforce that each access is granted in
such a way such that the confidentiality of any object is ensured at all times, as is
the case in the Bell–Lapdula policy.

However, the support for MLS in any existing SELinux policies is rather limited due
to the fact that this configuration has received the least attention by developers so far.
More on available configurations can be found in the following section.

8.5.5 A short overview of SELinux configuration

Configuring SELinux can be a fairly complex task. However, the example configurations
that are available provide a good starting ground, as does the documentation. Espe-
cially “Configuring the SELinux Policy” by Stephen Smalley [Stea] is a good source of
information. The O’Reilly Media has published a good book on SELinux [McC04]. It
covers most of the tasks that are involved in configuring SELinux as well as documenting
the policy language rather well.

This section will only provide a very quick overview of the tasks that (may) have to be
performed when changing the SELinux’ policy configuration. For detailed information
on how SELinux’ configuration and implementation works, see [Ray, Peta, Petc, Steb,
Stea, Fed]. The mentioned references also contain actual examples on how many of these
tasks are performed.

Configuration tasks

The actual configuration of the SELinux policy consists mainly of the following well
defined tasks, most of which have been done quite extensively in the example configu-
rations:

1. Adding users. The configuration defines its own users internal to the SELinux’
implementation, orthogonal to those of the ordinary Linux system

2. Adding roles. Roles are used to manage which TE domains a logged in user may
enter

3. Setting up access rights. The inter domain and type access rights must be defined
to achieve the access control that is desired

60 Chapter 8. Security Enhanced Linux

4. Assertions. The use of assertions is to ensure that some accesses are not granted
by mistake by the rest of the policy specification

5. Audit level. Accesses that are allowed or denied may or may not be logged. By
default only failed accesses are logged to the system log

6. Label the file system. The greatest work is to label the file system. The greatest
benefit of using a Linux distribution that provides support for SELinux is that
the file system will be configured so that the SELinux tool setfiles labels files
correctly

8.6 Concluding remarks and other technologies

Although SELinux is a rather mature technology it is lacking in a particular area: the
ability to record usage patterns. That is, it is not possibly to record the transitions
and accesses needed to perform a certain task, such as typical use of a web browser.
Availability of such functionality would no doubt hasten the development of the available
SELinux policies since the profiling of executables would be much quicker.

There are tools that may aid the development though, many which are provided by
Tresys [tre]. The tools they have produced make it easier to analyze an existing policy
configuration as well as develop new configurations. They also have a leading role in
the development of the SELinux reference policy configuration.

Support for such profiling can be found in Systrace [Sys] and Novell AppArmor [Nov],
of which the latter is included SuSe Linux 10.0. However, these aforementioned tools
then lacks in the area of secrecy since the technologies are more centered around in-
tegrity than SELinux, which offers explicit support for confidentiality through the
support for traditional MLS.

Chapter 9

Reference implementation of a
simple policy

The small reference implementation presented in this chapter utilizes the MLS features
of SELinux to enforce a strict Bell–Lapadula security policy. First, a hypothetic
situation is presented. Second, the policy is described in an informal way. Third, the
policy is described with algebra presented in Chapter 7. The chapter is then concluded
by a presentation of the steps performed to implement the policy using SELinux.

9.1 Problem environment

The problem at hand occurs in a hypothetical organization, from now on called HO,
that has a need to enforce a strict confidentiality policy for a number of documents.
These documents will however reside on a server that several people that does not have
the required clearance to access these documents have access to.

The goal is to ensure that only the members of HO that have proper security clearance
will be able to access the documents that are deemed important.

9.2 Informal policy description

The environment described in the preceding section fit very well into a Bell–Lapadula
(BLP) security policy since:

1. There is a need for confidentiality

2. There are clear ways of dividing the members of HO into groups made up of those
that have the right to access certain documents and those that do not

If some thought is put into the problem, it is also apparent that the strict BLP is an
appropriate solution for implementing the layered security; strict BLP disallows read up
and write operations are only allowed on the same security level. The restrictions that
should be enforced are depicted in Figure 9.1

Note how the information flow in Figure 9.1 allows for moving information to a level
with a higher clearance, but no information flow is allowed in the other direction. This

61

62 Chapter 9. Reference implementation of a simple policy

Figure 9.1: Informal description of the strict Bell–Lapadula security policy, only infor-
mation classed less or equal may be read and write operations can only be performed
on objects on the same level. Of course, all objects that are acted upon must be
properly dominated (cf. Chapter 6). The image is adapted from [Amo94]. The two
fields between the lines of course represents two distinct security levels

is due to the fact that information may only be written on the same confidentiality level
a subject is presently on, and read from levels lower or equals the subject’s own level.

Two assumptions are made : First subjects granted access to the objects protected
by the security policy is assumed not to try to break the policy. One way that will be
possible in the implementation, is to copy the files to a remote system that does not
enforce the same security policy, and thus downgrade the security. This may of course
be avoided by denying the subjects that are in a privileged role the access to programs
that enables such a course of action. But it is deemed beyond this simple example policy
to enforce the policy to such an extent. Second, only directories and files are assumed to
need protection, where directories are assumed to hold the property that for the policy
specification they can be viewed as files.

Bearing the above in mind, assume that the subject that should be able to access the
files is called secret u, and that the home directory of that subject is /home/secret/.
Assume also, that the directory /internal/secret is the location in which all important
documents should be placed. The conclusion is that the aforementioned directories
and their contents is the objects that should be protected by the policy depicted in
Figure 9.1. However, since the programs included in most systems are non–compliant
with the SELinux environment, in the sense that they do not try to raise or lower their
authorization when a user raises or lowers the current level of authorization, the home
directory /home/secret/ should be assumed to have the lowest available classification.
The user will log in under the lowest authorization level, enabling the system to write
to files in the home directory, and then explicitly raise the authorization level and thus
drop the rights to write to files in the home directory.

9.3 Formal policy description

Since an informal description often is imprecise, the strict Bell–Lapadula security pol-
icy in the preceding section will now be formalized using the algebra from Chapter 7,

9.3. Formal policy description 63

utilizing the MLS extension introduced in Section 7.6.2. Hence, the rest of this section
will introduce each of the elements that are needed accordingly to the definitions in Sec-
tion 7.6.2. Assumptions that are needed to complete a portion of the policy formulation
are introduced in the following sections.

9.3.1 Formulation of the MLS restrictions

The MLS restrictions that governs the accesses between levels, when utilizing the algebra
extension introduced in Section 7.6.2, is expressed using a set proposition. This set
proposition will then be used to obtain the permissions that are acceptable under these
restrictions. Note that the accesses that are of interest must be fully expressed.

ΦMLSread = ∀(x, y, z, w)[(x, y, (z, w)) ∈ X 7→ (x ⊆ co) ∧ (y ≤ ls) ∧ (w = +read)
ΦMLSwrite = ∀(x, y, z, w)[(x, y, (z, w)) ∈ X 7→ (x ⊆ co) ∧ (y = ls) ∧ (w = +write)

ΦMLS = ΦMLSread ∨ ΦMLSwrite

The access rights +read and +write are from the set of signed action terms (cf.
Definition 7.4.1).

9.3.2 Assignment of MLS authorizations

Since the mapping MSETMLSP uses both a set proposition and a MLS extended permis-
sion set to obtain the set of allowed authorizations, it is necessary to specify the needed
permissions explicitly at this point.

Assume that the set F is the set of all files on the system and that N is the set of
all files that accordingly to the policy should only be readable by a privileged subject.
The members of the set F , is assumed to have a level of the lowest possible, and are
allowed to have any classification that is in the set of all labels. These labels may be
shared with those in the set N . The members of set N are assigned the highest level
and a label “sSECRET” disjoint from the set of labels that is assigned to the members
of F and any classification “c”.

Expressed in another way: only the set of files that are categorized to be included in
the extra protection that the policy will provide will be labeled and classified in such a
way that the access to them will be affected. That is, the rest of the system will more
or less be unaffected by the MLS portion of the policy.

This conclusion lead to the following assumption: there is a system policy that
the MLS portion will coexist with that will govern the accesses to the files that are
not explicitly governed by the accesses defined in this example policy. Call this policy
psystem.

Since SELinux is used, this is actually the case; both the traditional DAC model and
the used MAC SELinux policy will enforce access restriction by the use of RBAC and Type
Enforcement (cf. Chapter 8). The addition of MLS conditions, that due to how the file
system is labeled will make certain decisions, will only refine some of the accesses, not
all.

SELinux has one other capability: a file that has not an explicit specification of its
security context inherits it from the parent directory.

The resulting mapping, due to the reasoning presented above and in the previous
section, become:

64 Chapter 9. Reference implementation of a simple policy

pMLS = ((secretu, sSECRET, c), ∅) 7→
((secretu, sSECRET,), (c, sSECRET,
(/internal/nonpublic,+write)
(/internal/nonpublic,+read)})

That this is the case is quite easy to see if one looks carefully at the definitions in
Section 7.6.2. Note that the home directory is excluded in the specification; the default
policy will handle the user’s home directory.

Since it is assumed that there will exist an atomic policy psystem, that the policy
resulting from the construction in this chapter can coexist with, transforming the above
mapping by the use of the previously defined ΦMLS , and the MMLSSETP mapping,
will provide the atomic policy that can be used in conjunction with the system policy;
psystem.

9.3.3 Transforming the MLS extended policy into atomic form

Since the policy pMLS defined in the previous section uses the MLS extensions defined
in Section 7.6.2, it must be transformed into an atomic policy using the MMLS mapping.

p = MMLS(ΦMLS)(St)(pMLS)
= (secretu, ∅) 7→ (secretu,

(/internal/nonpublic,+write)
(/internal/nonpublic,+read)})

9.3.4 Closing the derived policy

To ensure that proper rights are used under any implementation of the policy described
in the previous sections, the policy, p, is closed using the cCom operator (cf. Chapter 7).
Thus the following operations can be used.

psecure = Mpolicy(St)(cCom(p))
φ = (x, y) ∈ X → x 6= /internal/secret

psystem reduced = Mpolicy(St)(φ : psystem)
psystem secure = Mpolicy(St)(cCom(psystem reduced))

The above use of the internal scope operator will remove any rights concerning
the specified directories in proposition φ, making access to those impossible after the
application of the cCom operation.

Using the two policies psecure and psystem secure will ensure that proper protection is
enforced at all times.

9.4. Implementing the policy under SELinux 65

9.4 Implementing the policy under SELinux

To implement the policy described in the previous section, the MLS functionality of
SELinux will be used. The existing MLS configuration will be activated and extended
in such a way that the resulting policy complies with the specified MLS policy. That
is, the formal specification from the previous sections is implemented using the security
mechanisms provided by SELinux (cf. Chapter 8).

9.4.1 Installation of SELinux support

Installation of SELinux on an actual system becomes very distribution dependent. For
this reference implementation Fedora Core 4 (FC4)1 will be the base system used.

FC4 comes with kernel support for SELinux, and essential programs have been
patched in the appropriate ways to work with the security framework.

For instruction on how to install FC4, please see the instructions available on the
Fedora Core web site:

http://fedora.redhat.com/docs/fedora-install-guide-en/fc4

To add SELinux support after the installation, simply run the following commands, as
root, to install the support libraries:

yum install libselinux.i386

yum install libselinux-devel.i386

Furthermore, the reference policy can be downloaded from the from its project web-
site at sourceforge:

http://serefpolicy.sourceforge.net/

To install the SELinux reference policy configuration, follow the installation instruction
available on the “switching page”:

http://serefpolicy.sourceforge.net/index.php?page=switch

Make sure to download the latest version of the checkpolicy compiler and the libsepol
library from the download page, both of which is easily installed using the following
commands on FC4:

rpm -U checkpolicy-1.28-4.i386.rpm

rpm -i libsepol-1.11.7-1.i386.rpm

It may also be necessary to ensure that the configuration file for SELinux state that
the policy should be run in permissive mode. That is, it should only log what is denied,
which is the default logging mode; the security mechanism only log what is being denied,
not actually denying any actions. This may be useful to see whether the resulting policy
break the usage pattern of any existing software. The configuration file used in the
reference implementation, /etc/selinux/config is shown below:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - SELinux is fully disabled.

SELINUX=permissive

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Only targeted network daemons are protected.

strict - Full SELinux protection.

SELINUXTYPE=reference

1Fedora Core is a trademark of RedHat, Inc., visit http://fedora.redhat.com for more information

66 Chapter 9. Reference implementation of a simple policy

The mode can be changed to enforcing when the policy has been properly verified.

9.4.2 Setting up the MLS environment

Due to the fact that the MLS support is not fully supported by the current policy con-
figurations, a few special configuration steps must be taken to get a functioning system.
In this section, all configuration needed to enable the simple MLS policy previously
described will be presented in a step–by–step manner. It should be noted that the pol-
icy setup is made simpler by the fact that the access specification concerning the MLS
portion of the policy specification enforces BLP.

1. Change to the privileged user: su -
The modifications that will follow must be made by a privileged user. On systems
other than FC4 it may be necessarily to use a newrole -r system r command
to assume the system r after changing into the root account. This is due to the
fact that the su command need not change the role on all platforms. To see if this
is the case, simply issue the id -Z command, if the role is something other than
system r, change roles as was previously described

2. Adding test users.
The testing of the policy configuration will need three test users: two authorized
to access restricted files and one that is not. Hence, these users will have to be
added to the system before any further configuration is done

(a) Adding a group for the secret users: groupadd secret
The users that are authorized to access restricted files should be able to utilize
the traditional DAC security model present in a Linux system. Therefore, a
group that all such users will be members of is added

(b) Adding the test users.

adduser -G secret secret && passwd secret

adduser -G secret hidden && passwd hidden

adduser normal && passwd normal

3. cd /etc/selinux/refpolicy/src/policy
The directory in which the source of the reference SELinux policy is located under
FC4. If another distribution is used, it may reside elsewhere if not installed directly
from source (cf. previous section)

4. Changing build options in build.conf
The file build.conf located in the source directory controls a few settings that
will affect how the policy is compiled when translating from text to a binary policy
that can be handled in kernel space. The following lines are changed:

(a) TYPE=targeted-mls
The reference policy has, as was mentioned in Section 8.5.3, includes support
for both the targeted and the strict policy. Setting the type to targeted-mls
defines certain macros needed during compilation to use the MLS support
currently implemented in the policy configuration as well as activating the
security configuration for a large number of programs, most notably a large
number of daemon programs (i.e. servers such as web servers)

9.4. Implementing the policy under SELinux 67

(b) DISTRO=redhat
Fedora Core is sponsored by RedHat, and largely resembles their commercial
alternatives, hence the distribution setting is redhat. The DISTRO option
is used to include support for several different distribution, which may have
different layout in the file system hierarchy

(c) DIRECT INITRC=y
This option allows a system administrator to explicitly run scripts used during
boot. It is activated for convenience

(d) MONLITHIC=y
In the future the SELinux policy framework will include the ability to portion
the policy up in modules. The modules will, just as real kernel drivers, have
the ability to be loaded and reloaded independently of each other [tre]. This
policy, however, is of the traditional monolithic type

5. Adding user configuration in policy/users
The policy/users file contains configuration for the security contexts that subjects
in the system should have. If a user does not have an explicit entry in this file, a
generic context will automatically be assigned by the policy during runtime. The
following changes are performed to ensure policy compliance:

(a) Restricting the generic user context.
ifdef(‘targeted_policy’,‘

gen_user(user_u, user_r sysadm_r system_r, s0, s0 - s14:c0.c255, c0.c255)

’,‘

gen_user(user_u, user_r, s0, s0 - s14:c0.c255, c0.c255)

’)

The gen_user portion is a macro which is evaluated during compilation. The
important part of it is the s0 - s14 portion, which sets the security levels
that are reachable by this user. The lone s0 part specifies that the user should
login at the least privileged level

(b) Adding two test users to the policy, authorizing them to access files that are
to be considered restricted.
gen_user(secret, user_r system_r, s0, s0 - s15:c0.c255, c0.c255)

gen_user(hidden, user_r system_r, s0, s0 - s15:c0.c255, c0.c255)

The difference between these entries and the one for the generic user, is that
the user name (i.e. secret and hidden) are identical to two actual users
on the system (cf. earlier steps of this configuration) and that the highest
security level that they may enter is s15, a level which the generic user can
not enter

6. Adding file context configuration for the restricted portions of the file system in
policy/modules/kernel/files.fc.

/internal -d gen_context(system_u:object_r:default_t,s0)

/internal/secret -d gen_context(system_u:object_r:default_t,s15)

/internal/secret(/.*)? gen_context(system_u:object_r:default_t,s15)

The user, system u is a generic user used widely in the policy configuration.
The interesting part of the specification is the last part of the call to the macro
gen_context, the one specifying what security level a subject must have to ac-
cess a file or directory. The first two specify directories and the last on any file

68 Chapter 9. Reference implementation of a simple policy

under the /internal/secret/ directory. Hence, any user will be able to access
the contents of the /internal directory, while the contents of the subdirectory
secret/ will be restricted to users of a high enough security level

7. Disabling of non–MLS compliant programs, edit policy/modules.conf
Due to problems caused by the configuration specific to two programs when in-
stalling the compiled policy, those two are disabled. If not, file contexts that are
generated for files specific to these programs, simply does not work with the MLS
enabled policy, thus causing the auto relabeling of the file system to fail. The
programs in question are screen and irc.

Layer: apps

Module: irc

#

IRC client policy

#

irc = off

Layer: apps

Module: screen

#

GNU terminal multiplexer

#

screen = off

8. Compiling the policy configuration and installing all necessary configuration files.
The configuration must be compiled, and file context specifications files generated,
and installed under the /etc/selinux/refpolicy directory.

make clean

make install

9. Fixing resulting errors in
/etc/selinux/refpolicy/contexts/files/file contexts.homedirs
Due to reasons unknown to the author, an erroneous file context entry is present
in the aforementioned file. Hence, this file is edited by hand to adjust the setting
to one more appropriate, since the cause for the error could not be found.

#/home -d system_u:object_r:home_root_t:s15:c0.c255

/home -d user_u:object_r:user_home_dir_t:s0

As can be seen in the specification, the home directory /home, would have been
configured to be owned by the user root, which obviously is wrong. Therefore, the
entry is commented out and replaced by the second line

10. Activate automatic relabeling of the file system: touch /.autorelabel
Creating the file /.autorelabel will cause the file system to be automatically rela-
beled with the correct contexts specified under the /etc/selinux/refpolicy/contexts
directory

11. Reboot the system: reboot
Rebooting the system will make sure that the policy can be properly loaded in
case a non–MLS policy was previously loaded, and will make sure that all files are
properly labeled to work with the policy configuration

One thing to note about the reference policy configuration is that it requires rather
new versions of libraries and tools, as was described in Section 9.4.1, which in turn

9.4. Implementing the policy under SELinux 69

requires a fairly new version of the Linux kernel. If a error on the following form
is printed by any tool, or can be found in the log file /var/log/message, the kernel
should be updated.

Mar 2 19:55:13 hostname kernel: security: policydb version 20 does not

match my version range 15-19

The policydb portion of the log message refers to a part of the implementation of
SELinux security server. If using Fedora Core, updating the kernel is easily done with
the command “yum update kernel”.

9.4.3 Testing the reference implementation

The previous sections has described the theoretical specification of the strict Bell–
Lapdula policy using the algebra, presented in Chapter 7, using the techniques presented
in Section 7.6.2, and the actual implementation of it under SELinux using the reference
policy configuration. This section will test this configuration to determine whether the
implementation behaves in an acceptable manner, allowing only authorized subjects
to access the files in the directory /internal/secret/.

Due to the fact that the testing was performed while using the X Window System (X),
the policy enforcement had to be turned off during certain operations since the version
of X that was used is not compliant with the MLS portion of the policy specification.
Hence, any changes that had to be associated with the virtual terminal in use, such as
the current security level, could not be updated if the policy was active.

The privileged user secret

The first user to be tested, is the privileged user secret added in the configuration steps
presented in Section 9.4.2. To indicate whether enforcement of the policy is activated
or not, one of the following lines appear in the command listings that follows:

– # enforce is on
This line indicates that root has run the command setenforce 1, which activates
the enforcement of the currently loaded policy

– # enforce is off
This line indicates that root has run the command setenforce 0, which deacti-
vates the enforcement of the currently loaded policy

The user secret checks the current identity and security context,and creates a file.

enforce is on

$ whoami

secret

$ id -Z

secret:system_r:unconfined_t:s0-s15:c0.c255

$ pwd

/home/secret

$ echo "A line" > afile

$ ls -lZ afile

-rw-rw-r-- secret secret secret:object_r:user_home_t:s0 afile

As can be seen from the output, the security level needed to read the file is s0, as can
be seen in the last portion of the file information printed directly before the filename,
“afile”.

70 Chapter 9. Reference implementation of a simple policy

Enforcement is turned off, and the working directory is changed to the repository
directory /internal.

enforce is off

$ cd /internal

$ ls -lZd .

drwxr-xr-x root root system_u:object_r:default_t:s0 .

$ ls -lZ

drwxrwx--- root secret system_u:object_r:default_t:s15 secret

As is shown in the output from the command, the directory /internal/ can be
read by any user, while the subdirectory secret/ only can be accessed by a user with a
security level of, at least, s15. Hence, the enforcement is activated and the last command
is ran again.

enforce is on

$ ls -lZ

?--------- ? ? secret

$ cd secret

bash: cd: secret/: Access denied

The information about the subdirectory secret is no longer available. This is due to
the fact that the information which implies the existence of the subdirectory is stored in
the parent directory internal, while the subdirectory specific information is stored in
a separate part of the file system representing the subdirectory. Hence, the user secret
is able to use the ls–command to deduce that there is a directory secret, but can get
no information from the file system about it since the security level that is tied to the
user is too low to authorize access to that information.

The enforcement of the policy is deactivated, and the security level raised.

enforce is off

$ newrole -l s15

Authenticating secret.

Password: <password>

$ id -Z

secret:system_r:unconfined_t:s15-s15:c0.c255

The raising of the security level was the only operation that needed the enforcement
deactivated, so enforcement is turned on, and a few operations is performed upon the
subdirectory secret: the user, secret, changes the working directory into it and creates
two files and a new subdirectory inside it.

enforce is on

(create two files)

$ ls -lZ

drwxrwx--- root secret system_u:object_r:default_t:s15 secret

$ cd secret/

$ echo "file1: First line" > file1

$ echo "file2: First line" > file2

$ ls -lZ

-rw-rw-r-- secret secret secret:object_r:default_t:s15 file1

-rw-rw-r-- secret secret secret:object_r:default_t:s15 file2

$ chcon system_u:object_r:default_t:s15 file2

$ ls -lZ file2

-rw-rw-r-- secret secret system_u:object_r:default_t:s15 file2

$ cat file1 file2

file1: First line

file2: First line

9.4. Implementing the policy under SELinux 71

$ echo "file1: Second line" >> file1

$ echo "file2: Second line" >> file2

$ ls -lZ

-rw-rw-r-- secret secret secret:object_r:default_t:s15 file1

-rw-rw-r-- secret secret system_u:object_r:default_t:s15 file2

(create a directory)

$ mkdir testdir1

$ ls -lZd testdir1/

drwxrwxr-x secret secret secret:object_r:default_t:s15 testdir1/

As can be seen, the user secret, is now able to read information about the subdirec-
tory secret and perform tasks such as creating files and adding contents to them and
creating new subdirectories. Also note that the DAC security mechanisms are utilised
since the only users able to access the subdirectory secret is root and any user present
in the group secret. Moreover, the security context of the file “file2” is changed to
have the user portion of it to contain the generic system user system u, this is done to
compare accesses that are allowed by the policy for the use hidden in the next section.

Also note that the files, and the directory, created by the user secret, all have the
DAC portion mechanism flags set in such a way that the members of the group secret
may freely modify them.

To see one of the potential problems with using MLS under SELinux, the working
directory is changed back into the home directory, /home/secret, and a few operations
are performed on the file “afile” that was created in the beginning of this test.

$ cd /home/secret

$ cat afile

A line

$ echo "A line" > afile

bash: afile: Access denied

$ ls -lZd .

drwxr-xr-x secret secret secret:object_r:user_home_dir_t:s0

Since the policy is active, and it enforces the strict Bell–Lapdula MLS policy, the
user secret is able to read the file, but not write to it (cf. Figure 9.1 and Section 6.4.1
for a description of the “no write down” property).

The privileged user hidden

The second privileged user, hidden, is used in a manner similar to that of the user
secret.

First, the initial security level of the user is displayed, and the file “afile” in secret’s
home directory is read.

enforce is on

$ whoami

hidden

$ id -Z

hidden:system_r:unconfined_t:s0-s15:c0.c255

$ pwd

/home/hidden

$ ls -lZ /home/secret/afile

-rw-rw-r-- secret secret secret:object_r:user_home_t:s0 /home/secret/afile

$ cat /home/secret/afile

A line

72 Chapter 9. Reference implementation of a simple policy

The working directory is changed to the repository in /internal/. Just as for
secret, that directory is fully accessible to the hidden, while access to the subdirectory
secret is denied.

$ cd /internal

$ ls -lZd .

drwxr-xr-x root root system_u:object_r:default_t:s0 .

$ cd secret/

bash: cd: secret/: Access denied

$ ls -lZ

?--------- ? ? secret

The policy enforcement is deactivated to give the user hidden the ability to update
the security level.

enforce is off

$ newrole -l s15

Authenticating hidden.

Password: <password>

$ id -Z

hidden:system_r:unconfined_t:s15-s15:c0.c255

Setting the security level to s15, enables the user hidden to access the subdirectory
secret. The working directory is changed to that subdirectory, the contents of the two
files “file1” and “file” is read and the subdirectory “testdir1/” is entered.

enforce is on

$ cd secret/

$ ls -lZ

-rw-rw-r-- secret secret secret:object_r:default_t:s15 file1

-rw-rw-r-- secret secret system_u:object_r:default_t:s15 file2

drwxrwxr-x secret secret secret:object_r:default_t:s15 testdir1

$ cat file1 file2

file1: First line

file1: Second line

file2: First line

file2: Second line

$ cd testdir1

$ pwd

/internal/secret/testdir1

From the tests done with the user hidden, the conclusion that users at the same
level of authorization is able to access the same files under the policy configuration.

The unprivileged user normal

To test the protection of the contents of the repository against access attempts made
by unauthorized users, the user normal is used to try to access the repository directory
/internal/secret/.

$ whoami

normal

$ id -Z

user_u:system_r:unconfined_t:s0-s14:c0.c255

$ cd /internal

$ ls -lZ

?--------- ? ? secret

$ cd secret/

bash: cd secret/: Access denied

9.4. Implementing the policy under SELinux 73

As is obvious from the output of the attempt the directory to the secret subdi-
rectory, as well as accessing the subdirectory information, is prevented by the policy
enforcement mechanisms.

9.4.4 Problems with the policy implementation

The policy implementation has one big problem that is not readily apparent; the security
level s15 is the highest of the sixteen available security levels. Hence, this security level
must be available to at least the user root and the system user that is used to run the
system’s maintenance tools. Moreover, this security level is assigned to other portions
of the file system that has been deemed to be very important. Due to this, these system
users must be implicitly trusted within the policy. It is not possible to create a new
security level s16 using the current security framework, there exists a hard coded limit
of sixteen such levels.

9.4.5 Conclusions concerning the policy implementation

The implementation of the strict Bell–Lapdula under the SELinux reference policy is
very easy. The author has worked with the older targeted policy configuration, and the
interdependencies between the different portions of that policy makes is unnecessarily
hard to configure.

Moreover, the tests in Section 9.4.3 established that the policy complies with the
specifications established in Section 9.3, and hence the example policy is successful in
creating a repository in which secret documents can be secure confined from non–trusted
users on a system.

74 Chapter 9. Reference implementation of a simple policy

Chapter 10

Comparing SELinux’ policy
language to the policy algebra

In this chapter, the algebra discussed in chapter 7 will be compared to the language used
to specify SELinux policies [McC04, Sec] with respect to expressiveness and flexibility.
However, it will be done in an informal manner, and hence, differences in expressiveness
can only be argued, not proved.

The expressiveness in the areas concerning rights’ association with a subject or
role, access restriction, ability to catch errors in the resulting policy and readability is
discussed.

10.1 Access restriction

The ability to restrict access is the very purpose of the a MAC policy. Hence, this is by
far the most important thing to consider; is the language able to express the restrictions
that must be imposed?

Both the algebra discussed in Chapter 7 and the SELinux’ policy language can assign
any (valid) permission to any object that may be of interest.

Both languages lack in two different areas though. The algebra has no way to use
some form of regular expression to specify a range of files and directories in a concise way.
This makes it tedious to assign precise mappings of access rights to all files and directories
present on a system. The SELinux’ configuration on the other hand is restricted by the
abilities of the available mechanisms that implement actual security, which, to mention
one issue, does not support distributed policies, which may be expressed in the purely
symbolic algebra.

Given that the two candidates has very different basis, the result must be that it
is a draw, simply due to the fact that both the polices can impose most of the really
important restrictions and SELinux’ is an actual, working, security mechanism.

10.2 Access right association

Both the algebra and the SELinux’ policy languages support the association of rights
and access restrictions to both subject and roles. The policy does this directly, while

75

76 Chapter 10. Comparing SELinux’ policy language to the policy algebra

in SELinux’, the rights are associated with a role, which in turn is associated with a
subject. Hence they are equally powerful with the respect to this category.

10.3 Ability to catch errors in the resulting policy

SELinux’ policy language includes support for specifying properties that must hold, such
as that a certain permission is only assigned to a certain user. The algebra has support
for this through both the scoping and provision operators (cf. Section 7.3.2). Hence.
both languages must be considered to be equally powerful with respect to this category
since both is able to either detect errors or simply filter them out.

10.4 Readability

In actual development, readability becomes a real concern since, if a developer can not
understand some part of, or the whole, policy specification, aforementioned developer
will not be able to enhance the policy in ways that may desirable.

SELinux’ policy language in it self is rather easy to read, at least after some practice.
One of the things that makes the language easy to read is that operators are made up
of real words, with self explaining names. Moreover, more and more of the actual
policy is implemented using macros with self explaining names, and the macros are
well documented. The macros themselves are built using a rather easy to read macro
language called m4 to generate more complex statements in the actual policy language.

The common algebra discussed in Chapter 7 on the other hand uses symbols from
logic and set theory to express a policy. Although powerful, the readability suffer very
badly from this. The biggest issue though is the fact that the syntax for the scoping
and provision operator is too alike, making it hard to remember exactly which one is
which if not working with the algebra on a fairly regular basis (cf. Section 7.3.2 for a
description of the syntax).

Due to the fact the SELinux’ policy specification is made using a mixture of well
documented macros with, reasonably, well chosen names ,and that said macros and the
language has been documented, that configuration language must be said to be the
stronger candidate with respect to readability.

10.5 Conclusion

Both the algebra from Chapter 7 and the SELinux’ policy language are of comparable
strength with respect to expressiveness. Furthermore, both have the capability to catch
configuration errors. But the fact that SELinux’ policy language has a much higher
readability than the algebra makes it the overall winner in this comparison. Readability
is simply a very important issue in the real world.

However, the algebra’s strength lies in that it is independent of any security mech-
anism, making it a very strong candidate for expressing policies that are to be used on
several different systems, with potentially different configuration environments.

Chapter 11

Conclusions

The goals for this thesis were to examine Mandatory Access Control using both a
theoretical and a practical approach. The main purpose of the theoretical approach was
to discuss an algebra that was expressive enough to describe restrictions and assignments
of access rights at an abstract level. The main goal of the practical approach was to
discuss the SELinux security framework. Using the discussed theory and technology, the
two approaches were to be combined in the formulation and implementation of a simple
security policy; the policy was to be specified using the algebra and implemented in
SELinux. The then two approaches was to be compared with respect to expressiveness.

All of the goals set up for the thesis were achieved. The introductory theory presented
in the first chapters of the thesis provided the necessary components to discuss the
algebra in Chapter 7, which was then used, together with a simple extension based
on basic logic, to define a MLS security policy. The policy was implemented in the
SELinux security framework discussed in Chapter 8, using the relatively new reference
policy configuration. The policy was tested in Chapter 9, which established that the
policy performed correctly. The two approaches were compared in Chapter 10. The
comparison established that the policy language was slightly stronger than that of the
algebra due to a much higher level of readability.

If one should try to predict the direction of any continued efforts, in the case of
the SELinux community and its development efforts, it will most probably concern
modularity of the policy and support for distributed policies. This is important, since a
modular policy will enable system administrators to load and unload specific parts of he
policy without the need to recompile the whole policy. Distributed policy enforcement
on the other hand is important for implementing a uniform policy that is enforced in a
networked environment. For example, that will make it possible to ensure the protection
of documents on a corporate network. Moreover, it seems that more powerful policy
languages, that removes the need for a separate macro language, seems to be under
development.

77

78 Chapter 11. Conclusions

Chapter 12

Acknowledgements

I would like to thank my supervisor Jonny Pettersson for his patience with my somewhat
slow progress at times and for his advise on matters where I got stuck. I would also like
to thank Frank Drewes for his help with the problems I had with the algebra.

79

80 Chapter 12. Acknowledgements

References

[Amo94] Edward Amoroso. Fundamentals of Computer Security Technology. Prentice
Hall, 1994.

[And01a] Ross Andersson. Security Engineering - A Guide to Building Dependable
Distribution Systems. John Wiley & Sons, Inc., 2001.

[And01b] Andrew S. Tanenbaum. Modern Operation Systems, 2nd Edition. Prentice
Hall, 2001.

[Bis03] Matt Bishop. Computer Security, Art and Science. Addison Wesley, 2003.

[Bro] Brown Biomed department. Robotic Surgery.
http://biomed.brown.edu/Courses/BI108/ BI108 2005 Groups/04/index.
html (visited 2005-11-14).

[CSR] CSRC. Security and Planning in the Computer System Life
Cycle. http://csrc.nist.gov/publications/nistpubs/800-12/800-12-
html/chapter8.html (visited 2005-11-15).

[Dag98] Dag Ingvar Jacobsen and Jan Thorsvik. Hur moderna organisationer
fungerar. Studentlitteratur, 1998. Written in swedish.

[Dum03a] Duminda Wijesekera and Sushil Jajodia. A Propsitional Policy Algera for
Access Control. ACM Transactions on Information and Systems Security, 6
(2):286–325, May 2003.

[Dum03b] Duminda Wijesekera and Sushil Jajodia. Policy Algebras for Access Control -
The Propsitional Case. Proceedings of the 8th ACM conference on Computer
and Communications Security, pages 38–47, November 2003.

[Fed] Fedora Project. SELinux FAQs. http://fedora.redhat.com/docs/selinux-faq/
(visited 2005-12-14).

[Har76] Harrison, Ruzzo and Ullman. Protection in Operating Systems. Communi-
cations of the ACM, 19 (8):461–471, 1976.

[IAC] IACS. Common Criteria levels. http://www.cesg.gov.uk/site/iacs/index.cfm?
menuSelected=1&displayPage=13 (visited 2005-11-15).

[Ken96] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J Petkac,
David L. Shermann and Karen A. Oostendorp. Confining Root Programs
with Domain and Type Enforcement (DTE). Proceedings of the Sixth
USENIX UNIX Security Symposium, San Jose, California, 1996.

81

82 REFERENCES

[Lee95] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker and
Sheila A. Haghighat. A Domain and Type Enforcement UNIX Prototype.
Proceedings of the Fifth USENIX UNIX Security Symposium, Salt Lake City,
Utah, 1995.

[Lin] Linux Programmer’s Manual. NETLINK (7).
http://www.linuxinfor.com/english/man7/netlink.html (visited 2005-11-14).

[Mar03] Mark G. Graff and R. van Wyk. Secure Coding, Principels and Practices.
O’Reilly, 2003.

[McC04] Bill McCarty. SELinux – NSA’s Open Source Security Enhanced Linux.
O’Reilly, 2004.

[Mor01] Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer,
2001.

[Nov] Novell. SuSe Linux 10.0. http://www.novell.com/products/suselinux/security.
html (visited 2006-01-23).

[Ope] OpenBSD project. OpenBSD Security. http://openbsd.org/security.html
(visited: 2005-12-05).

[Peta] Peter A. Loscocco, NSA and Stephen D. Smalley, NAI Labs.
Meeting Critical Security Objectives with Security Enhanced Linux.
http://www.nsa.gov/selinux/papers/ottawa01-abs.cfm (visited 2005-11-15).

[Petb] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C.
Taylor, S. Jeff Turner and John F. Farrell. The Inevitability of Failure:
The Flawed Assumption of Security in Modern Computing Environments.
http://www.nsa.gov/selinux/papers/inevit-abs.cfm (visited 2005-11-15).

[Petc] Peter Loscocco and Stephen Smalley. Integrating Flexible Sup-
port for Security Policies into the Linux Operating System.
http://www.nsa.gov/selinux/papers/freenix01-abs.cfm (visited 2005-11-
15).

[pla] Planet SELinux. http://www.selinuxnews.org/planet (visited: 2006-03-19).

[Pro] GNU Project. GNU m4. http://www.gnu.org/software/m4 (visited: 2006-
03-19).

[Ral00] Ralph P. Grimaldi. Discrete and Combinatorial Mathematics. Addison Wes-
ley Longman, April 2000.

[Rav88] Ravinderpal Singh Sandhu. The Schematic Protection Problem: Its Defini-
tion and Analysis for Acyclic Attenuating Schemes. Communications of the
ACM, 35 (2):404–432, 1988.

[Rav96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and Charles E. Youman.
Role-Based Access Control Models. IEEE Computer, 29 (2):38–47, 1996.

[Ray] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Ander-
sen and Jay Lepreau. The Flask Architecture: System Support for Diverse
Security Policies. http://www.nsa.gov/selinux/papers/flask-abs.cfm (visited
2005-11-15).

REFERENCES 83

[Sal] Salim,Khosravi, Kleen and Kuznetsov. Linux Netlink as an IP Services Pro-
tocol. http://rfc3549.x42.com/ (visited 2005-11-14).

[Sch00] Bruce Schneier. Secrets and Lies. John Wiley & Sons, Inc., 2000.

[Sec] Security Enhanced Linux Reference Policy Project. Security Enhanced
Linux Reference Policy. http://serefpolicy.sourceforge.net/index.php (vis-
ited: 2006-02-24).

[Sha] Shari L. Phleeger. Software Engineering: Theory and Practice, 2nd Edition.
Prentice Hall.

[Stea] Stephen Smalley. Configuring the SELinux Policy.
http://www.nsa.gov/selinux/papers/policy2-abs.cfm (visited 2005-12-14).

[Steb] Stephen Smalley, Chris Vance and Wayne Salamon. Implementing SELinux
as a Linux Security Module. http://www.nsa.gov/selinux/papers/module-
abs.cfm (visited 2005-11-15).

[Sud97] Thomas A. Sudkamp. Languages and Machines, An Introduction to the The-
ory of Computer Science. Second Edition. Addison Wesley, 1997.

[Syl00] Sylvia Osborn, Ravi S. Sandhu and Qamar Munawer. Configuring Role-Based
Access Control to Enforce Mandatory and Discretionary Access Control Poli-
cies. ACM Transactions on Information and Systems Security, 3 (2):85–106,
2000.

[Sys] Systrace Policy Generation. http://www.systrace.org (visited 2006-01-23).

[tre] Tresys Technology. http://www.tresys.com (visited: 2006-03-19).

84 REFERENCES

Appendix A

Source Code

The files modified in Section 9.4.2 to alter the standard configuration of the SELinux
reference configuration are included for reference. All changes have comments beginning
with @DIFF before they occur. The simple application security configuration has been
excluded due to the trivial changes, which are explained in Section 9.4.2.

A.1 Compilation configuration

Options used to configure the compilation process for the policy configuration (i.e. the
file /etc/selinux/refpolicy/src/policy/build.conf).

##

#

Policy build options

#

Policy version

By default, checkpolicy will create the highest

version policy it supports. Setting this will

override the version. This only has an

effect for monolithic policies.

#OUTPUT_POLICY = 18

Policy Type

strict, targeted,

strict-mls, targeted-mls,

strict-mcs, targeted-mcs

@DIFF TYPE = strict

@DIFF Note the differencies in the configuration in

@DIFF file "policy/users"

TYPE = targeted-mls

Policy Name

If set, this will be used as the policy

name. Otherwise the policy type will be

used for the name.

NAME = refpolicy

85

86 Chapter A. Source Code

Distribution

Some distributions have portions of policy

for programs or configurations specific to the

distribution. Setting this will enable options

for the distribution.

redhat, gentoo, debian, and suse are current options.

Fedora users should enable redhat.

@DIFF DISTRO = redhat

DISTRO = redhat

Direct admin init

Setting this will allow sysadm to directly

run init scripts, instead of requring run_init.

This is a build option, as role transitions do

not work in conditional policy.

@DIFF DIRECT_INITRC=n

DIRECT_INITRC=y

Build monolithic policy. Putting n here

will build a loadable module policy.

MONOLITHIC=y

Polyinstantiation

Enable polyinstantiated directory support.

POLY=n

Uncomment this to disable command echoing

#QUIET:=@

A.2 Home directory security context configuration

The generated home directories security context configuration (i.e. the file
/etc/selinux/refpolicy/contexts/files/file contexts.homedirs.

#

#

User-specific file contexts, generated via /usr/sbin/genhomedircon

edit /etc/selinux/refpolicy/users/local.users to change file_context

#

#

#

Home Context for user user_u

#

/home/[^/]*/.+ user_u:object_r:user_home_t:s0

/home/[^/]*/.*/plugins/libflashplayer\.so.* --user_u:object_r:textrel_shlib_t:s0

/home/[^/]*/((www)|(web)|(public_html))(/.+)? user_u:object_r:httpd_user_content_t:s0

/home/[^/]* -d user_u:object_r:user_home_dir_t:s0

/home/a?quota\.(user|group) --system_u:object_r:quota_db_t:s0

/home/lost\+found/.* <<none>>

A.2. Home directory security context configuration 87

@DIFF /home -d system_u:object_r:home_root_t:s15:c0.c255

/home -d user_u:object_r:user_home_dir_t:s0

/home/\.journal <<none>>

/home/lost\+found -d system_u:object_r:lost_found_t:s15:c0.c255

#

Other Context for user .*

#

#

Home Context for user secret

#

/home/secret/.+ secret:object_r:user_home_t:s0

/home/secret/.*/plugins/libflashplayer\.so.* --secret:object_r:textrel_shlib_t:s0

/home/secret/((www)|(web)|(public_html))(/.+)? secret:object_r:httpd_user_content_t:s0

/home/secret -d secret:object_r:user_home_dir_t:s0

#

Other Context for user secret

#

#

Home Context for user root

#

/root/.+ root:object_r:user_home_t:s0

/root/.*/plugins/libflashplayer\.so.* --root:object_r:textrel_shlib_t:s0

/root/((www)|(web)|(public_html))(/.+)? root:object_r:httpd_user_content_t:s0

/root -d root:object_r:user_home_dir_t:s0

#

Other Context for user root

#

#

Home Context for user hidden

#

/home/hidden/.+ hidden:object_r:user_home_t:s0

88 Chapter A. Source Code

/home/hidden/.*/plugins/libflashplayer\.so.* --hidden:object_r:textrel_shlib_t:s0

/home/hidden/((www)|(web)|(public_html))(/.+)? hidden:object_r:httpd_user_content_t:s0

/home/hidden -d hidden:object_r:user_home_dir_t:s0

#

Other Context for user hidden

#

A.3 File system security context configuration

The file system security context configuration. Note the configuration for the /internal
directory and its subdirectories (i.e. the file
/etc/selinux/refpolicy/src/policy/policy/modules/kernel/files.fc).

#

/

#

/.* gen_context(system_u:object_r:default_t,s0)

/ -d gen_context(system_u:object_r:root_t,s0)

/\.journal <<none>>

ifdef(‘distro_redhat’,‘

/\.autofsck --gen_context(system_u:object_r:etc_runtime_t,s0)

/\.autorelabel --gen_context(system_u:object_r:etc_runtime_t,s0)

/fastboot --gen_context(system_u:object_r:etc_runtime_t,s0)

/forcefsck --gen_context(system_u:object_r:etc_runtime_t,s0)

/fsckoptions --gen_context(system_u:object_r:etc_runtime_t,s0)

/halt --gen_context(system_u:object_r:etc_runtime_t,s0)

/poweroff --gen_context(system_u:object_r:etc_runtime_t,s0)

’)

ifdef(‘distro_suse’,‘

/success --gen_context(system_u:object_r:etc_runtime_t,s0)

’)

@DIFF

@DIFF /internal

@DIFF All under "secret" is to be protected

@DIFF

/internal -d gen_context(system_u:object_r:default_t,s0)

/internal/secret -d gen_context(system_u:object_r:default_t,s15)

/internal/secret(/.*)? gen_context(system_u:object_r:default_t,s15)

#

/boot

#

/boot/\.journal <<none>>

/boot/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

A.3. File system security context configuration 89

/boot/lost\+found/.* <<none>>

#

/emul

#

ifdef(‘distro_redhat’,‘

/emul(/.*)? gen_context(system_u:object_r:usr_t,s0)

’)

#

/etc

#

/etc(/.*)? gen_context(system_u:object_r:etc_t,s0)

/etc/\.fstab\.hal\..+ --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/asound\.state --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/blkid\.tab.* --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/fstab\.REVOKE --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/HOSTNAME --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/ioctl\.save --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/issue --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/issue\.net --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/localtime -l gen_context(system_u:object_r:etc_t,s0)

/etc/mtab --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/motd --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/nohotplug --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/nologin.* --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/smartd\.conf --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/cups/client\.conf --gen_context(system_u:object_r:etc_t,s0)

/etc/init\.d/functions --gen_context(system_u:object_r:etc_t,s0)

/etc/ipsec\.d/examples(/.*)? gen_context(system_u:object_r:etc_t,s0)

/etc/network/ifstate --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/ptal/ptal-printd-like -- gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/rc\.d/init\.d/functions -- gen_context(system_u:object_r:etc_t,s0)

/etc/sysconfig/hwconf --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/sysconfig/iptables\.save -- gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/sysconfig/firstboot --gen_context(system_u:object_r:etc_runtime_t,s0)

ifdef(‘distro_gentoo’, ‘

/etc/profile\.env --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/csh\.env --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/env\.d/.* --gen_context(system_u:object_r:etc_runtime_t,s0)

’)

ifdef(‘distro_redhat’,‘

/etc/rhgb(/.*)? -d gen_context(system_u:object_r:mnt_t,s0)

90 Chapter A. Source Code

’)

ifdef(‘distro_suse’,‘

/etc/defkeymap\.map --gen_context(system_u:object_r:etc_runtime_t,s0)

/etc/init\.d/\.depend.* --gen_context(system_u:object_r:etc_runtime_t,s0)

’)

#

HOME_ROOT

expanded by genhomedircon

#

HOME_ROOT -d gen_context(system_u:object_r:home_root_t,s15:c0.c255)

HOME_ROOT/\.journal <<none>>

HOME_ROOT/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

HOME_ROOT/lost\+found/.* <<none>>

#

/initrd

#

initrd mount point, only used during boot

/initrd -d gen_context(system_u:object_r:root_t,s0)

#

/lost+found

#

/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/lost\+found/.* <<none>>

#

/media

#

Mount points; do not relabel subdirectories, since

we don’t want to change any removable media by default.

/media(/[^/]*)? -d gen_context(system_u:object_r:mnt_t,s0)

/media/[^/]*/.* <<none>>

#

/mnt

#

/mnt(/[^/]*)? -d gen_context(system_u:object_r:mnt_t,s0)

/mnt/[^/]*/.* <<none>>

#

/opt

#

/opt(/.*)? gen_context(system_u:object_r:usr_t,s0)

/opt(/.*)?/var/lib(64)?(/.*)? gen_context(system_u:object_r:var_lib_t,s0)

#

/proc

#

/proc(/.*)? <<none>>

A.3. File system security context configuration 91

#

/selinux

#

/selinux(/.*)? <<none>>

#

/srv

#

/srv(/.*)? gen_context(system_u:object_r:var_t,s0)

#

/sys

#

/sys(/.*)? <<none>>

#

/tmp

#

/tmp -d gen_context(system_u:object_r:tmp_t,s0-s15:c0.c255)

/tmp/.* <<none>>

/tmp/\.journal <<none>>

/tmp/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/tmp/lost\+found/.* <<none>>

#

/usr

#

/usr(/.*)? gen_context(system_u:object_r:usr_t,s0)

/usr/\.journal <<none>>

/usr/etc(/.*)? gen_context(system_u:object_r:etc_t,s0)

/usr/inclu.e(/.*)? gen_context(system_u:object_r:usr_t,s0)

/usr/local/\.journal <<none>>

/usr/local/etc(/.*)? gen_context(system_u:object_r:etc_t,s0)

/usr/local/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/usr/local/lost\+found/.* <<none>>

/usr/local/src(/.*)? gen_context(system_u:object_r:src_t,s0)

/usr/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/usr/lost\+found/.* <<none>>

/usr/share(/.*)?/lib(64)?(/.*)? gen_context(system_u:object_r:usr_t,s0)

/usr/src(/.*)? gen_context(system_u:object_r:src_t,s0)

/usr/tmp -d gen_context(system_u:object_r:tmp_t,s0-s15:c0.c255)

92 Chapter A. Source Code

/usr/tmp/.* <<none>>

#

/var

#

/var(/.*)? gen_context(system_u:object_r:var_t,s0)

/var/\.journal <<none>>

/var/db/.*\.db --gen_context(system_u:object_r:etc_t,s0)

/var/ftp/etc(/.*)? gen_context(system_u:object_r:etc_t,s0)

/var/lib(/.*)? gen_context(system_u:object_r:var_lib_t,s0)

/var/lib/nfs/rpc_pipefs(/.*)? <<none>>

/var/lock(/.*)? gen_context(system_u:object_r:var_lock_t,s0)

/var/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/var/lost\+found/.* <<none>>

/var/run -d gen_context(system_u:object_r:var_run_t,s0-s15:c0.c255)

/var/run/.* gen_context(system_u:object_r:var_run_t,s0)

/var/run/.*\.*pid <<none>>

/var/spool(/.*)? gen_context(system_u:object_r:var_spool_t,s0)

/var/tmp -d gen_context(system_u:object_r:tmp_t,s0-s15:c0.c255)

/var/tmp/.* <<none>>

/var/tmp/lost\+found -d gen_context(system_u:object_r:lost_found_t,s15:c0.c255)

/var/tmp/lost\+found/.* <<none>>

/var/tmp/vi\.recover -d gen_context(system_u:object_r:tmp_t,s0)

A.4 User configuration

Configuration of security levels available to users (i.e. the file
/etc/selinux/refpolicy/src/policy/policy/users).

##################################

#

Core User configuration.

#

#

gen_user(username, role_set, mls_defaultlevel, mls_range, [mcs_catetories])

#

#

system_u is the user identity for system processes and objects.

There should be no corresponding Unix user identity for system,

and a user process should never be assigned the system user

identity.

A.4. User configuration 93

#

@DIFF Note that system_u is considered a "trustworthy" user;

@DIFF system_u can read level s15 files

gen_user(system_u, system_r, s0, s0 - s15:c0.c255, c0.c255)

#

user_u is a generic user identity for Linux users who have no

SELinux user identity defined. The modified daemons will use

this user identity in the security context if there is no matching

SELinux user identity for a Linux user. If you do not want to

permit any access to such users, then remove this entry.

#

@DIFF ifdef(‘targeted_policy’,‘

@DIFF gen_user(user_u, user_r sysadm_r system_r, s0, s0 - s15:c0.c255, c0.c255)

@DIFF ’,‘

@DIFF gen_user(user_u, user_r, s0, s0 - s15:c0.c255, c0.c255)

@DIFF ’)

@DIFF

@DIFF Upper sensitivity level is for "secret" only: s/s15/s14

ifdef(‘targeted_policy’,‘

gen_user(user_u, user_r sysadm_r system_r, s0, s0 - s14:c0.c255, c0.c255)

’,‘

gen_user(user_u, user_r, s0, s0 - s14:c0.c255, c0.c255)

’)

@DIFF The "secret" user, will have access to sensitivity level s15

@DIFF and have default level s0 to enable currect login (the files

@DIFF $HOME must be of level s0 to work correctly, and files on that

@DIFF level can not be written to under BLP)

gen_user(secret, user_r system_r, s0, s0 - s15:c0.c255, c0.c255)

@DIFF The "hidden" user, will have access to sensitivity level s15

@DIFF and have default level s0 to enable currect login (the files

@DIFF $HOME must be of level s0 to work correctly, and files on that

@DIFF level can not be written to under BLP)

@DIFF Used to demonstrate what must be done to share files

gen_user(hidden, user_r system_r, s0, s0 - s15:c0.c255, c0.c255)

#

The following users correspond to Unix identities.

These identities are typically assigned as the user attribute

when login starts the user shell. Users with access to the sysadm_r

role should use the staff_r role instead of the user_r role when

not in the sysadm_r.

#

@DIFF Note that root is considered a "trustworthy" user; root can

@DIFF read level s15 files

ifdef(‘targeted_policy’,‘

gen_user(root, user_r sysadm_r system_r, s0, s0 - s15:c0.c255, c0.c255)

’,‘

ifdef(‘direct_sysadm_daemon’,‘

gen_user(root, sysadm_r staff_r system_r, s0, s0 - s15:c0.c255, c0.c255)

94 Chapter A. Source Code

’,‘

gen_user(root, sysadm_r staff_r, s0, s0 - s15:c0.c255, c0.c255)

’)

’)

